The complete timer
1.Decade counter2.Four-bit binary counter3.Decade counter again4.Slow decade counter5.Counter 1-126.Counter 10007.4-digit decimal counter8.12-hour clock9.Hdlbits博文分布10.4-bit shift register11.Left/right rotator12.Left/right arithmetic shift by 1 or 813.5-bit LFSR14.3-bit LFSR15.32-bit LFSR16.Shift register17.Shift register(2)18.3-input LUT19.Rule 9020.Rule 11021.Conway's Game of Life 16x1622.Simple FSM1(asynchronous reset)23.Simple FSM1(synchronous reset)24.Simple FSM2(asynchronous reset)25.Simple FSM2(synchronous reset)26.Simple state transition 327.Simple one-hot state transition 328.Simple FSM 3(asynchronous reset)29.Simple FSM 3(synchronous reset)30.Design a Moore FSM31.Lemmings 132.Lemmings 233.Lemmings 334.Lemmings 435.One-hot FSM36.PS/2 packet parser37.PS/2 packet parser and datapath38.Serial receiver39.Serial receiver and datapath40.Serial receiver with parity checking41.Sequence recognition42.Q8:Design a Mealy FSM43.Q5a:Serial two's complementer(Moore FSM)44.Q5b:Serial two's complementer(Moore FSM)45.Q3a:FSM46.Q3b:FSM47.Q3c:FSM logic48.Q6b:FSM next-state logic49.Q6c:FSM next-state logic50.Q6:FSM51.Q2a:FSM52.Q2:One-hot FSM equations53.Q2a: FSM54.Q2b:Another FSM55.Counter with period 100056.4-bit shift register and down counter57.FSM:Sequence 1101 recognizer58.FSM:Enable shift register59.FSM:The complete FSM
60.The complete timer
61.FSM:One-hot logic equations62.UARTmodule top_module (
input clk,
input reset, // Synchronous reset
input data,
output [3:0] count,
output counting,
output done,
input ack );
reg [9:0] counter;
reg clkn;
reg [4:0] delay; // 防 count=4'b1111(4'hf)时,delay=count+4'd1=0溢出。
reg [3:0] state,next_state;
parameter [3:0] S = 4'd0,S1 = 4'd1,S11 = 4'd2,S110 = 4'd3,B0 = 4'd4,B1 = 4'd5,B2 = 4'd6,B3 = 4'd7,Count2 = 4'd8,Wait = 4'd9;
// state transfer
always@(*) begin
case(state)
S: begin
next_state = (data)? S1:S;
end
S1: begin
next_state = (data)? S11:S;
end
S11: begin
next_state = (data)? S11:S110;
end
S110: begin
next_state = (data)? B0:S;
end
B0: begin
next_state = B1;
end
B1: begin
next_state = B2;
end
B2: begin
next_state = B3;
end
B3: begin
next_state = Count2;
end
Count2: begin
next_state =(delay == 5'd0)? Wait:Count2;
end
Wait: begin
next_state =(ack)? S:Wait;
end
default: next_state = S;
endcase
end
// flip-flop
always@(posedge clk) begin
if(reset)
state <= S;
else
state <= next_state;
end
// output
always@(posedge clk) begin
counting <= (next_state == Count2 && !reset)? 1'b1:1'b0; // 这里记得加条件!reset,否则倒数中途reset需要再多隔1cycle,(先变state再变counting)
done <= (next_state == Wait)? 1'b1:1'b0;
end
// shift reg
always@(posedge clk) begin
if(state == B0 || state == B1 || state == B2) begin
count <= {count[2:0],data};
delay <= {delay[3:0],data};
counter <= 10'd0;
end
else if(state == B3) begin
count <= {count[2:0],data};
delay <= {delay[3:0],data} + 4'd1;
counter <= 10'd0;
end
else if(next_state == Count2) begin
count <= (count != 4'd0 && counter == 10'd999)? count - 4'd1:count; // 后者亦满足当count=0则其一直保持0,只是输出的形式,真的倒数看delay
if(delay != 4'd1 && counter == 10'd999) begin //非1的时候,在每一个0进行减
delay <= delay - 5'd1;
end
else if(delay == 5'd1 && counter == 10'd998) begin
delay <= 5'd0;
end
else begin
delay <= delay;
end
counter <= (counter == 10'd999)? 10'd0:counter+10'd1; // frequency divider
end
else begin
counter <= 10'd0;
count <= 4'd0; // 其他state,count保持0
delay <= 5'd0;
end
end
endmodule
合集:
Verilog学习
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理