2101: [Usaco2010 Dec]Treasure Chest 藏宝箱
Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 418 Solved: 206
[Submit][Status][Discuss]
Description
Bessie and Bonnie have found a treasure chest full of marvelous gold coins! Being cows, though, they can't just walk into a store and buy stuff, so instead they decide to have some fun with the coins. The N (1 <= N <= 5,000) coins, each with some value C_i (1 <= C_i <= 5,000) are placed in a straight line. Bessie and Bonnie take turns, and for each cow's turn, she takes exactly one coin off of either the left end or the right end of the line. The game ends when there are no coins left. Bessie and Bonnie are each trying to get as much wealth as possible for themselves. Bessie goes first. Help her figure out the maximum value she can win, assuming that both cows play optimally. Consider a game in which four coins are lined up with these values: 30 25 10 35 Consider this game sequence: Bessie Bonnie New Coin Player Side CoinValue Total Total Line Bessie Right 35 35 0 30 25 10 Bonnie Left 30 35 30 25 10 Bessie Left 25 60 30 10 Bonnie Right 10 60 40 -- This is the best game Bessie can play.
当全部金币取完之后。游戏就结束了。
Input
* Line 1: A single integer: N * Lines 2..N+1: Line i+1 contains a single integer: C_i
Output
* Line 1: A single integer, which is the greatest total value Bessie can win if both cows play optimally.
Sample Input
30
25
10
35
Sample Output
HINT
(贝西最好的取法是先取35,然后邦妮会取30。贝西再取25,邦妮最后取10)
Source
动态规划的空间优化,感觉方法还是不错的。
#include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #define F(i,j,n) for(int i=j;i<=n;i++) #define D(i,j,n) for(int i=j;i>=n;i--) #define ll long long #define maxn 5005 using namespace std; int n,x; int f[maxn],sum[maxn]; inline int read() { int x=0,f=1;char ch=getchar(); while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();} while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } int main() { n=read(); sum[0]=0; F(i,1,n) { x=read(); sum[i]=sum[i-1]+x; f[i]=x; } F(j,1,n-1) F(i,1,n-j) f[i]=sum[i+j]-sum[i-1]-min(f[i],f[i+1]); printf("%d\n",f[1]); }