实验一Hadoop实验-HDFS与Mapreduce操作

石 家 庄 铁 道 大 学

实 验 报 告

课程名称:云计算计算与应用 班级:信2005-2 学号:20204139  姓名:贾再民

实验一Hadoop实验-HDFS与Mapreduce操作

一、实验目的 

1、利用虚拟机搭建集群部署hadoop

2、HDFS文件操作以及文件接口编程

3、MAPREDUCE并行程序开发、发布与调用

二、实验内容

1.虚拟机集群搭建部署hadoop

1.1利用VMware、centOS-7、Xshell(secureCrt)等软件搭建集群部署hadoop,具体操作参照

https://www.bilibili.com/video/BV1Kf4y1z7Nw?p=1

 

2.HDFS文件操作

2.1在分布式文件系统上验证HDFS文件命令

[-ls <path>]  //显示目标路径当前目录下的所有文件

 

[-du <path>]  //以字节为单位显示目录中所有文件的大小,或该文件的大小(如果path为文件)

 2.2HDFS文件操作

调用HDFS文件接口实现对分布式文件系统中文件的访问,如创建、修改、删除等。

源代码:

package mapreduce;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FSDataOutputStream;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.log4j.BasicConfigurator;

 

public class test {

public static void main(String[] args) {

BasicConfigurator.configure();

try {

Configuration conf = new Configuration();

 FileSystem fs = FileSystem.get(conf);

String filename = "hdfs://node01:8020/user/test.txt";

FSDataOutputStream os = fs.create(new Path(filename));

byte[] buff = "hello world!".getBytes();

os.write(buff, 0, buff.length);

System.out.println("Create" + filename);

catch (Exception e) {

e.printStackTrace();

}

}

}

运行结果:

 

 3.MAPREDUCE并行程序开发

3.1求每年最高气温

源代码:

package mapreduce;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

 

public class Temperature {

static class TempMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

@Override

public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

System.out.print("Before Mapper: " + key + ", " + value);

String line = value.toString();

String year = line.substring(0, 4);

int temperature = Integer.parseInt(line.substring(8));

context.write(new Text(year), new IntWritable(temperature));

System.out.println("======" + "After Mapper:" + new Text(year) + ", " + new IntWritable(temperature));

}

}

 

static class TempReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

@Override

public void reduce(Text key, Iterable<IntWritable> values, Context context)

throws IOException, InterruptedException {

int maxValue = Integer.MIN_VALUE;

StringBuffer sb = new StringBuffer();

 

for (IntWritable value : values) {

maxValue = Math.max(maxValue, value.get());

sb.append(value).append(",");

}

System.out.print("Before Reduce: " + key + ", " + sb.toString());

context.write(key, new IntWritable(maxValue));

System.out.println("======" + "After Reduce: " + key + ", " + maxValue);

}

}

public static void main(String[] args) throws Exception {

String dst = "hdfs://node01:8020/user/zzy/input.txt";

String dstOut = "hdfs://node01:8020/user/zzy/output";

Configuration hadoopConfig = new Configuration();

hadoopConfig.set("fs.hdfs.impl", org.apache.hadoop.hdfs.DistributedFileSystem.class.getName());

hadoopConfig.set("fs.file.impl", org.apache.hadoop.fs.LocalFileSystem.class.getName());

Job job = new Job(hadoopConfig);

// job.setJarByClass(NewMaxTemperature.class);

FileInputFormat.addInputPath(job, new Path(dst));

FileOutputFormat.setOutputPath(job, new Path(dstOut));

job.setMapperClass(TempMapper.class);

job.setReducerClass(TempReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

job.waitForCompletion(true);

System.out.println("Finished");

}

}

运行结果:

 

 

 

 

3.2词频统计

源代码:

import java.io.IOException;

import org.apache.commons.lang.StringUtils;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class WordCountMapper extends Mapper<LongWritable, Text, Text, LongWritable> {

@Override

protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context)

throws IOException, InterruptedException {

String[] words = StringUtils.split(value.toString(), " ");

for (String word : words) {

context.write(new Text(word), new LongWritable(1));

}

}

}

 

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

public class WordCountReducer extends Reducer<Text, LongWritable, Text, LongWritable> {

@Override

protected void reduce(Text arg0, Iterable<LongWritable> arg1,

Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {

int sum = 0;

for (LongWritable num : arg1) {

sum += num.get();

}

context.write(arg0, new LongWritable(sum));

}

}

 

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import org.apache.log4j.BasicConfigurator;

public class WordCountRunner {

public static void main(String[] args)throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {

BasicConfigurator.configure();

Configuration conf = new Configuration();

Job job = new Job(conf);

job.setJarByClass(WordCountRunner.class);

job.setJobName("wordcount");

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(LongWritable.class);

job.setMapperClass(WordCountMapper.class);

job.setReducerClass(WordCountReducer.class);

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

FileInputFormat.addInputPath(job, new Path("hdfs://node01:8020/user/zzy/input_wordcount.txt"));// 输入路径

FileOutputFormat.setOutputPath(job, new Path("hdfs://node01:8020/user/zzy/output_wordcount"));// 输出路径

job.waitForCompletion(true);

}

}

运行结果:

 

 

 

三、实验总结:

通过完成这次的Hadoop实验-HDFS与Mapreduce操作的实验操作,因为我之前就已经利用虚拟机搭建集群部署hadoop,所以就直接开始学习和操作HDFS文件操作以及文件接口编程以及MAPREDUCE并行程序开发、发布与调用。我经过这次试验收获了很多,包括对于 Hadoop 的 map 函数和 reduce 函数,处理的数据是键值对,也就是说 map 函数接收的数据是键值对,两个参数;输出的也是键值对,两个参数;reduce 函数接收的数和输出的结果也是键值对。MapReduce 运行的时候,会通过 Mapper 运行的任务读取 HDFS 中的数据文件,然后调用自己的方法,处理数据,最后输出。Reducer 任务会接收 Mapper 任务输出的数据,作为自己的输入数据,调用自己的方法,最后输出到 HDFS 的文件中。也使我对hadoop中HDFS和Mapreduce的一些操作和注意事项有了更加深刻的认识和理解,能够更好的应用到云计算中去。

 

posted @ 2022-11-28 14:21  萧贾jzm  阅读(454)  评论(0编辑  收藏  举报
//歌单id