UVA 11987 Almost Union-Find (带权并查集的操作及并查集的删除操作)

I hope you know the beautiful Union-Find structure. In this problem, you're to implement something similar, but not identical.

The data structure you need to write is also a collection of disjoint sets, supporting 3 operations:

1 p q

Union the sets containing p and q. If p and q are already in the same set, ignore this command.

2 p q

Move p to the set containing q. If p and q are already in the same set, ignore this command

3 p

Return the number of elements and the sum of elements in the set containing p.

Initially, the collection contains n sets: {1}, {2}, {3}, ..., {n}.

Input

There are several test cases. Each test case begins with a line containing two integers n and m (1<=n,m<=100,000), the number of integers, and the number of commands. Each of the next m lines contains a command. For every operation, 1<=p,q<=n. The input is terminated by end-of-file (EOF). The size of input file does not exceed 5MB.

Output

For each type-3 command, output 2 integers: the number of elements and the sum of elements.

Sample Input

5 7
1 1 2
2 3 4
1 3 5
3 4
2 4 1
3 4
3 3

Output for the Sample Input

3 12
3 7

2 8

题意:给你3种操作。1是将2个集合合并。2是把集合p从原来的集合抽取出来,放入集合q,假设在一起就忽略本命令,3是查询p所在集合的元素个数,跟该集合的元素之和

思路:科普了一下,眼下还没有算法能支持并查集的点直接删除,由于并查集的性质!那么我们能够把抽离出来的点映射到一个新的节点(该节点本身不存在),然后再对原集合进行操作,那么操作其它点的时候就是直接操作每一个点的映射了。

特别注意的是操作2。首先要推断两点是否已经在一起了。不然操作就会错。

AC代码:

#include<cstdio>
#include<cstring>

typedef long long ll;
const int maxn=100000+10;
int a[maxn];
int f[maxn*2],tot[maxn];
ll d[maxn];

int find(int x)
{
    if(x!=f[x])
    {
        f[x]=find(f[x]);
        return f[x];
    }
    else
        return x;
}

void Union(int u,int v)
{
    int x=find(a[u]);
    int y=find(a[v]);
    if(x==y)return ;
    d[y]+=d[x];
    tot[y]+=tot[x];
    f[x]=y;
}

int main()
{
    #ifndef ONLINE_JUDGE
        freopen("in.cpp","r",stdin);
        freopen("out.cpp","w",stdout);
    #endif // ONLINE_JUDGE
    int n,m;
    while(scanf("%d %d",&n,&m)!=EOF)
    {
        for(int i=0;i<=n;i++){
            f[i]=i;
            d[i]=i;
            a[i]=i;
            tot[i]=1;
        }
        //memset(d,0,sizeof(d));
        int num=n+1;
        while(m--)
        {
            int k;
            scanf("%d",&k);
            if(k==1)
            {
                int u,v;
                scanf("%d %d",&u,&v);
                Union(u,v);
            }
            else if(k==2)
            {
                int u,v;
                scanf("%d %d",&u,&v);
                if(find(a[u])==find(a[v]))continue;
                int x=find(a[u]);
                d[x]-=u;
                tot[x]--;

                a[u]=num++;
                d[a[u]]=u;
                tot[a[u]]=1;
                f[a[u]]=a[u];
                Union(u,v);

            }
            else
            {
                int q;
                scanf("%d",&q);
                int x=find(a[q]);
                printf("%d %lld\n",tot[x],d[x]);
            }
        }
    }
    return 0;
}


posted @ 2017-08-18 11:57  jzdwajue  阅读(161)  评论(0编辑  收藏  举报