IOI2021集训队作业 165SI Insider’s Information

有一个排列。有\(m\)个三元组\((a_i,b_i,c_i)\),表示\(b_i\)的位置在\(a_i\)的位置和\(c_i\)的位置之间(不确定\(a_i\)\(c_i\)的位置关系),满足这个排列。

你现在需要尽可能地还原这个排列,使得有至少一半的三元组被满足。

\(n,m\le 10^5\)


做不出来的神仙构造。。

首先整一个类似于拓扑序的东西,使得\(a_i\)\(c_i\)一定不同时出现在\(b_i\)前。因为一定有解,所以这个序一定存在。

从后往前扫,构造答案序列。对于一个三元组,在最前面一个位置(即扫到的最后一个位置)统计贡献。设这个位置上的是\(a\),三元组\((a,b,c)\)可能存在答案序列中\(b\)\(c\)前和\(b\)\(c\)后两种情况,可以算出\(a\)放最左边的贡献和最右边的贡献。贪心决定取哪边,并且将\(a\)丢到那一边。

由于贪心地取,所以每次至少一半被满足。


using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <list>
#define N 100005
int n,m;
struct EDGE{
	int b,c;
	EDGE *las;
} e[N*2];
int ne;
EDGE *last[N];
int in[N],vis[N];
int q[N],t[N];
void init(){
	int head=1,tail=0;
	for (int i=1;i<=n;++i)
		if (!in[i])
			q[++tail]=i;
	while (head<=tail){
		int a=q[head++];
		vis[a]=1;
		for (EDGE *ei=last[a];ei;ei=ei->las)
			if (!vis[ei->c]){
				if (!--in[ei->b])
					q[++tail]=ei->b;
			}
	}
	for (int i=1;i<=n;++i)
		t[q[i]]=i;
}
int _ans[N*2],*ans=_ans+N,l,r,w[N];
int main(){
	freopen("in.txt","r",stdin);
	scanf("%d%d",&n,&m);
	for (int i=1;i<=m;++i){
		int a,b,c;
		scanf("%d%d%d",&a,&b,&c);
		e[ne]={b,c,last[a]};
		last[a]=e+ne++;
		e[ne]={b,a,last[c]};
		last[c]=e+ne++;
		in[b]++;
	}
	init();
	ans[l=r=0]=q[n];
	w[q[n]]=l;
	for (int i=n-1;i>=1;--i){
		int a=q[i],mn=0,mx=0;
		for (EDGE *ei=last[a];ei;ei=ei->las)
			if (t[ei->c]>t[a]){
				if (w[ei->b]<w[ei->c])
					mn++;
				else
					mx++;
			}
		if (mn>mx){
			ans[--l]=a;
			w[a]=l;
		}
		else{
			ans[++r]=a;
			w[a]=r;
		}
	}
	for (int i=l;i<=r;++i)
		printf("%d ",ans[i]);
	return 0;
}
posted @ 2020-10-21 21:16  jz_597  阅读(182)  评论(0编辑  收藏  举报