莫队算法简析
莫队是个什么玩意儿?
一开始听见这个算法,感觉非常高大上。
后来,听了大概的思想后,就觉得是玄学算法。
现在,我才知道,这是根号算法……
先看一道例题
BZOJ2038: [2009国家集训队]小Z的袜子(hose)
题目大意
给你一个数列,每次询问一个区间,在这个区间中随机取出两个数,这两个数相等的概率。
暴力?
首先我们想一想答案是多少。
很显然,对于一个区间,我们可以处理出每个数字出现的次数。
记出现的次数为。
那么,对于一个数字,选中两个的方案数为。
而总共的方案数有。
所以,对于区间,答案为
所以,可以考虑每一次直接暴力计算,那么时间复杂度总共是
显然爆炸。
莫队算法
莫队算法用来干嘛?
莫队算法主要用来处理一堆的区间问题……
思想
对于一个状态,可以通过的时间转移到、、、。
那么从一个询问,如果要转移到,花的时间复杂度就是。
但是,如果按照题目给定的顺序来做,那么,将会分分钟被卡爆。
So?What should we do?
有一个非常容易想到的做法叫最小生成树。不过,曼哈顿最小生成树用普通方法来跑是贼慢的。有一种求曼哈顿最小生成树的方法,但是,我不会……
还有一个分块的做法。
设一个块的大小为,将所有的询问分块处理。
将询问排个序,以左端点所在的块为第一关键字,以右端点为第二关键字。
分析一下时间复杂度。
当一个询问转移到下一个询问时:
对于左端点,在同一个块中,那么最多跳次。否则,考虑计算所有跨块的情况,总共顶多只是次。所以,对于左端点,花的总时间是
对于右端点,在每一个块中,总共顶多跳次。如果是跨块的情况,每次顶多次。一共有个块,那么,对于右端点,时间复杂度为。
综上所述,总时间复杂度为
利用平衡规划的思想,可知当的时候,时间复杂度是最优的,为。
回到例题
显然,可以用莫队算法做。
每一次区间变动,就可以用方法更改状态和答案。
所以一个裸莫队就行了。
据说,用曼哈顿最小生成树来做,最后的时间复杂度也是。而且曼哈顿最小生成树还难打。这个分块的方式,还是相当好打的,排完序之后就简单粗暴地干就行了。
代码
using namespace std;
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define MAXN 50000
#define MAXM 50000
long long gcd(long long a,long long b){
long long k;
while (b){
k=a%b;
a=b;
b=k;
}
return a;
}
int n,m;
int col[MAXN+1];
int unit;//块的大小
int be[MAXN+1];//表示每个点所在的块
struct Operation{
int time,l,r;
} o[MAXM+1];
bool cmp(const Operation &x,const Operation &y){
return be[x.l]<be[y.l] || be[x.l]==be[y.l] && x.r<y.r;
}
struct Answer{
long long fz,fm;//分子,分母
void yf(){//约分
int g=gcd(fz,fm);
fz/=g;
fm/=g;
}
} ans[MAXM+1];
int num[MAXN+1];
int main(){
scanf("%d%d",&n,&m);
for (int i=1;i<=n;++i)
scanf("%d",&col[i]);
unit=sqrt(n);
for (int i=1;i<=n;++i)
be[i]=(i-1)/unit+1;
for (int i=1;i<=m;++i)
o[i].time=i,scanf("%d%d",&o[i].l,&o[i].r);
sort(o+1,o+m+1,cmp);
int nowl=1,nowr=0;
long long nowfz=0;
for (int i=1;i<=m;++i){
while (nowl>o[i].l){
nowl--;
nowfz+=/*(num[col[nowl]]+1)*num[col[nowl]]-num[col[nowl]]*(num[col[nowl]]-1)>>1*/num[col[nowl]];
num[col[nowl]]++;
}
while (nowr<o[i].r){
nowr++;
nowfz+=num[col[nowr]];
num[col[nowr]]++;
}
while (nowl<o[i].l){
nowfz-=/*num[col[nowl]]*(num[col[nowl]]-1)-(num[col[nowl]]-1)*(num[col[nowl]]-2)>>1*/num[col[nowl]]-1;
num[col[nowl]]--;
nowl++;
}
while (nowr>o[i].r){
nowfz-=num[col[nowr]]-1;
num[col[nowr]]--;
nowr--;
}
ans[o[i].time]={nowfz,(long long)(o[i].r-o[i].l+1)*(o[i].r-o[i].l)>>1};
ans[o[i].time].yf();
}
for (int i=1;i<=m;++i)
printf("%lld/%lld\n",ans[i].fz,ans[i].fm);
return 0;
}
总结
莫队算法是个神奇的算法。
事实上,分块算法都很神奇。
如果一些题目做不出来,那就分块试一试吧!