[JZOJ4665] 【GDOI2017模拟7.21】数列
题目
题目大意
给你一个数列,让你找到一个最长的连续子序列,满足在添加了至多个数之后,能够变成一条公差为的等差数列。
思考历程
一眼看上去似乎是一道神题……
没有怎么花时间思考,毕竟时间都砸到T1和T2上了。
正解
仔细推一下就会发现这种等差数列有三个简单的条件:
- 所有数模的余数相同
- 没有重复的数(的时候除外)
前面两个都能很快地预处理。
现在我们枚举一个右边界,前面两个条件可以使我们得知最远的左边界。
我们把第三个条件的式子乱搞一下:
考虑一下能不能维护左边的式子。最重要的是维护最小值和最大值。
随便想想就可以知道,左边界在区间中,最小值的取值是一段一段的(最大值也一样)。
或许能够用这条性质来维护。
接着就可以想到单调队列。对于最小值和最大值分别维护一条单调队列。
设单调队列上某个位置的值是,上一个位置是,那么区间中的值为。
于是我们可以在线段树上区间修改。
在维护单调队列的过程中,最小(大)值会有些变化。这也可以直接在线段树上改。
至于,这个是很容易维护的,每次直接将区间减就可以了。
询问的时候就是寻找线段树上最左边的小于的值。这个可以维护最小值,在线段树上二分就可以维护了。
代码
using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#define N 200010
#define INF 1000000000000000000
int n;
long long K,D;
int a[N];
bool bz[N];
map<int,int> last;
int fr[N];
int q1[N],q2[N];//min max
int h1,t1,h2,t2;
long long t[N*4],lazy[N*4];
inline void pushdown(int k){
t[k<<1]+=lazy[k],t[k<<1|1]+=lazy[k];
lazy[k<<1]+=lazy[k],lazy[k<<1|1]+=lazy[k];
lazy[k]=0;
}
void build(int k,int l,int r){
t[k]=INF;
if (l==r)
return;
int mid=l+r>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
}
void add(int k,int l,int r,int st,int en,long long c){
if (st<=l && r<=en){
t[k]+=c;
lazy[k]+=c;
return;
}
pushdown(k);
int mid=l+r>>1;
if (st<=mid)
add(k<<1,l,mid,st,en,c);
if (mid<en)
add(k<<1|1,mid+1,r,st,en,c);
t[k]=min(t[k<<1],t[k<<1|1]);
}
void change0(int k,int l,int r,int x){
if (l==r){
t[k]=0;
return;
}
pushdown(k);
int mid=l+r>>1;
if (x<=mid)
change0(k<<1,l,mid,x);
else
change0(k<<1|1,mid+1,r,x);
t[k]=min(t[k<<1],t[k<<1|1]);
}
int query(int k,int l,int r,int en){
if (t[k]>K*D)
return 0;
if (l==r)
return l;
pushdown(k);
int mid=l+r>>1,res=0;
res=query(k<<1,l,mid,en);
if (!res && mid<en)
res=query(k<<1|1,mid+1,r,en);
return res;
}
int main(){
scanf("%d%lld%lld",&n,&K,&D);
for (int i=1;i<=n;++i)
scanf("%d",&a[i]);
if (D==0){
int ansl=1,len=1;
for (int i=1,j=0;i<=n;++i)
if (a[i]!=a[i-1]){
if (i-j>len)
len=i-j,ansl=j;
else if (i-j==len)
ansl=j;
}
printf("%d %d\n",ansl,ansl+len-1);
return 0;
}
for (int i=1;i<=n;++i)
if (i==1 || (a[i]%D+D)%D!=(a[i-1]%D+D)%D)
bz[i]=1;
for (int i=1;i<=n;++i){
fr[i]=last[a[i]];
last[a[i]]=i;
}
build(1,1,n);
h1=h2=1,t1=t2=0;
int ansl=1,len=1;
for (int i=1,st=1;i<=n;++i){
if (bz[i]){
h1=h2=1,t1=t2=0;
if (st<=i-1)
add(1,1,n,st,i-1,INF);
st=i;
}
else if (st<=fr[i]){
add(1,1,n,st,fr[i],INF);
st=fr[i]+1;
}
while (h1<=t1 && q1[h1]<st)
h1++;
while (h2<=t2 && q2[h2]<st)
h2++;
while (h1<=t1 && a[q1[t1]]>=a[i]){
add(1,1,n,q1[t1-1]+1,q1[t1],+a[q1[t1]]-a[i]);
t1--;
}
while (h2<=t2 && a[q2[t2]]<=a[i]){
add(1,1,n,q2[t2-1]+1,q2[t2],-a[q2[t2]]+a[i]);
t2--;
}
q1[++t1]=q2[++t2]=i;
if (st<=i-1)
add(1,1,n,st,i-1,-D);
change0(1,1,n,i);
int l=query(1,1,n,i);
if (i-l+1>len)
len=i-l+1,ansl=l;
else if (i-l+1==len && l<ansl)
ansl=l;
}
printf("%d %d\n",ansl,ansl+len-1);
return 0;
}
总结
单调队列可以干的东西,可不仅仅是DP啊……