进程池与线程池基本使用
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
import time
import os
# 创建进程池与线程池
# pool = ThreadPoolExecutor(5) # 可以自定义线程数 也可以采用默认策略
pool = ProcessPoolExecutor(5) # 可以自定义线程数 也可以采用默认策略
# 定义一个任务
def task(n):
print(n, os.getpid())
time.sleep(2)
return '>>>:%s' % n ** 2
# 定义一个回调函数:异步提交完之后有结果自动调用该函数
def call_back(a):
print('异步回调函数:%s' % a.result())
# 朝线程池中提交任务
# obj_list = []
for i in range(20):
res = pool.submit(task, i).add_done_callback(call_back) # 异步提交
# obj_list.append(res)
"""
同步:提交完任务之后原地等待任务的返回结果 期间不做任何事
异步:提交完任务之后不愿地等待任务的返回结果 结果由异步回调机制自动反馈
"""
# 等待线程池中所有的任务执行完毕之后 再获取各自任务的结果
# pool.shutdown()
# for i in obj_list:
# print(i.result()) # 获取任务的执行结果 同步
在windows电脑中如果是进程池的使用也需要在__main__下面
协程理论与实操
进程
资源单位
线程
工作单位
协程
是程序员单方面意淫出来的名词>>>:单线程下实现并发
# CPU被剥夺的条件
1.程序长时间占用
2.程序进入IO操作
# 并发
切换+保存状态
以往学习的是:多个任务(进程、线程)来回切换
# 欺骗CPU的行为
单线程下我们如果能够自己检测IO操作并且自己实现代码层面的切换
那么对于CPU而言我们这个程序就没有IO操作,CPU会尽可能的被占用
"""代码层面"""
第三方gevent模块:能够自主监测IO行为并切换
from gevent import monkey;monkey.patch_all() # 固定代码格式加上之后才能检测所有的IO行为
from gevent import spawn
import time
def play(name):
print('%s play 1' % name)
time.sleep(5)
print('%s play 2' % name)
def eat(name):
print('%s eat 1' % name)
time.sleep(3)
print('%s eat 2' % name)
start = time.time()
# play('jason') # 正常的同步调用
# eat('jason') # 正常的同步调用
g1 = spawn(play, 'jason') # 异步提交
g2 = spawn(eat, 'jason') # 异步提交
g1.join()
g2.join() # 等待被监测的任务运行完毕
print('主', time.time() - start) # 单线程下实现并发,提升效率
协程实现TCP服务端并发的效果
# 并发效果:一个服务端可以同时服务多个客户端
import socket
from gevent import monkey;monkey.patch_all()
from gevent import spawn
def talk(sock):
while True:
try:
data = sock.recv(1024)
if len(data) == 0:break
print(data)
sock.send(data+b'hello baby!')
except ConnectionResetError as e:
print(e)
sock.close()
break
def servers():
server = socket.socket()
server.bind(('127.0.0.1',8080))
server.listen()
while True:
sock, addr = server.accept()
spawn(talk,sock)
g1 = spawn(servers)
g1.join()
# 客户端开设几百个线程发消息即可
"""
最牛逼的情况:多进程下开设多线程 多线程下开设协程
我们以后可能自己动手写的不多 一般都是使用别人封装好的模块或框架
"""
IO模型简介
"""理论为主 代码实现大部分为伪代码(没有实际含义 仅为验证参考)"""
IO模型研究的主要是网络IO(linux系统)
# 基本关键字
同步(synchronous) 大部分情况下会采用缩写的形式 sync
异步(asynchronous) async
阻塞(blocking)
非阻塞(non-blocking)
# 研究的方向
Stevens在文章中一共比较了五种IO Model:
* blocking IO 阻塞IO
* nonblocking IO 非阻塞IO
* IO multiplexing IO多路复用
* signal driven IO 信号驱动IO
* asynchronous IO 异步IO
由signal driven IO(信号驱动IO)在实际中并不常用,所以主要介绍其余四种IO Model
四种IO模型简介
# 1.阻塞IO
最为常见的一种IO模型 有两个等待的阶段(wait for data、copy data)
# 2.非阻塞IO
系统调用阶段变为了非阻塞(轮训) 有一个等待的阶段(copy data)
轮训的阶段是比较消耗资源的
# 3.多路复用IO
利用select或者epoll来监管多个程序 一旦某个程序需要的数据存在于内存中了 那么立刻通知该程序去取即可
# 4.异步IO
只需要发起一次系统调用 之后无需频繁发送 有结果并准备好之后会通过异步回调机制反馈给调用者