HashMap原理源码分析

1、本文结合项目中使用以及此篇博客http://www.cnblogs.com/chenssy/p/3521565.html 记录hashmap原理
package java.util; 
import java.io.*; 
 
public class HashMap<K,V> 
    extends AbstractMap<K,V> 
    implements Map<K,V>, Cloneable, Serializable 
 
    // 默认的初始容量(容量为HashMap中槽的数目)是16,且实际容量必须是2的整数次幂。 
    static final int DEFAULT_INITIAL_CAPACITY = 16
 
    // 最大容量(必须是2的幂且小于2的30次方,传入容量过大将被这个值替换) 
    static final int MAXIMUM_CAPACITY = 1 << 30
 
    // 默认加载因子为0.75
    static final float DEFAULT_LOAD_FACTOR = 0.75f; 
 
    // 存储数据的Entry数组,长度是2的幂。 
    // HashMap采用链表法解决冲突,每一个Entry本质上是一个单向链表 
    transient Entry[] table; 
 
    // HashMap的底层数组中已用槽的数量 
    transient int size; 
 
    // HashMap的阈值,用于判断是否需要调整HashMap的容量(threshold = 容量*加载因子) 
    int threshold; 
 
    // 加载因子实际大小 
    final float loadFactor; 
 
    // HashMap被改变的次数 
    transient volatile int modCount; 
 
    // 指定“容量大小”和“加载因子”的构造函数 
    public HashMap(int initialCapacity, float loadFactor) { 
        if (initialCapacity < 0
            throw new IllegalArgumentException("Illegal initial capacity: "
                                               initialCapacity); 
        // HashMap的最大容量只能是MAXIMUM_CAPACITY 
        if (initialCapacity > MAXIMUM_CAPACITY) 
            initialCapacity = MAXIMUM_CAPACITY; 
        //加载因此不能小于0
        if (loadFactor <= 0 || Float.isNaN(loadFactor)) 
            throw new IllegalArgumentException("Illegal load factor: "
                                               loadFactor); 
 
        // 找出“大于initialCapacity”的最小的2的幂 
        int capacity = 1
        while (capacity < initialCapacity) 
            capacity <<= 1
 
        // 设置“加载因子” 
        this.loadFactor = loadFactor; 
        // 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。 
        threshold = (int)(capacity * loadFactor); 
        // 创建Entry数组,用来保存数据 
        table = new Entry[capacity]; 
        init(); 
    
 
    // 指定“容量大小”的构造函数 
    public HashMap(int initialCapacity) { 
        this(initialCapacity, DEFAULT_LOAD_FACTOR); 
    
 
    // 默认构造函数。 
    public HashMap() { 
        // 设置“加载因子”为默认加载因子0.75 
        this.loadFactor = DEFAULT_LOAD_FACTOR; 
        // 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。 
        threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR); 
        // 创建Entry数组,用来保存数据 
        table = new Entry[DEFAULT_INITIAL_CAPACITY]; 
        init(); 
    
 
    // 包含“子Map”的构造函数 
    public HashMap(Map<? extends K, ? extends V> m) { 
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1
                      DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR); 
        // 将m中的全部元素逐个添加到HashMap中 
        putAllForCreate(m); 
    
 
    //求hash值的方法,重新计算hash值
    static int hash(int h) { 
        h ^= (h >>> 20) ^ (h >>> 12); 
        return h ^ (h >>> 7) ^ (h >>> 4); 
    
 
    // 返回h在数组中的索引值,这里用&代替取模,旨在提升效率
    // h & (length-1)保证返回值的小于length 
    static int indexFor(int h, int length) { 
        return h & (length-1); 
    
 
    public int size() { 
        return size; 
    
 
    public boolean isEmpty() { 
        return size == 0
    
 
    // 获取key对应的value 
    public V get(Object key) { 
        if (key == null
            return getForNullKey(); 
        // 获取key的hash值 
        int hash = hash(key.hashCode()); 
        // 在“该hash值对应的链表”上查找“键值等于key”的元素 
        for (Entry<K,V> e = table[indexFor(hash, table.length)]; 
             e != null
             e = e.next) { 
            Object k; 
            //判断key是否相同
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) 
                return e.value; 
        }
        //没找到则返回null
        return null
    
 
    // 获取“key为null”的元素的值 
    // HashMap将“key为null”的元素存储在table[0]位置,但不一定是该链表的第一个位置! 
    private V getForNullKey() { 
        for (Entry<K,V> e = table[0]; e != null; e = e.next) { 
            if (e.key == null
                return e.value; 
        
        return null
    
 
    // HashMap是否包含key 
    public boolean containsKey(Object key) { 
        return getEntry(key) != null
    
 
    // 返回“键为key”的键值对 
    final Entry<K,V> getEntry(Object key) { 
        // 获取哈希值 
        // HashMap将“key为null”的元素存储在table[0]位置,“key不为null”的则调用hash()计算哈希值 
        int hash = (key == null) ? 0 : hash(key.hashCode()); 
        // 在“该hash值对应的链表”上查找“键值等于key”的元素 
        for (Entry<K,V> e = table[indexFor(hash, table.length)]; 
             e != null
             e = e.next) { 
            Object k; 
            if (e.hash == hash && 
                ((k = e.key) == key || (key != null && key.equals(k)))) 
                return e; 
        
        return null
    
 
    // 将“key-value”添加到HashMap中 
    public V put(K key, V value) { 
        // 若“key为null”,则将该键值对添加到table[0]中。 
        if (key == null
            return putForNullKey(value); 
        // 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。 
        int hash = hash(key.hashCode()); 
        int i = indexFor(hash, table.length); 
        for (Entry<K,V> e = table[i]; e != null; e = e.next) { 
            Object k; 
            // 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出! 
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { 
                V oldValue = e.value; 
                e.value = value; 
                e.recordAccess(this); 
                return oldValue; 
            
        
 
        // 若“该key”对应的键值对不存在,则将“key-value”添加到table中 
        modCount++;
        //将key-value添加到table[i]处
        addEntry(hash, key, value, i); 
        return null
    
 
    // putForNullKey()的作用是将“key为null”键值对添加到table[0]位置 
    private V putForNullKey(V value) { 
        for (Entry<K,V> e = table[0]; e != null; e = e.next) { 
            if (e.key == null) { 
                V oldValue = e.value; 
                e.value = value; 
                e.recordAccess(this); 
                return oldValue; 
            
        
        // 如果没有存在key为null的键值对,则直接题阿见到table[0]处! 
        modCount++; 
        addEntry(0, null, value, 0); 
        return null
    
 
    // 创建HashMap对应的“添加方法”, 
    // 它和put()不同。putForCreate()是内部方法,它被构造函数等调用,用来创建HashMap 
    // 而put()是对外提供的往HashMap中添加元素的方法。 
    private void putForCreate(K key, V value) { 
        int hash = (key == null) ? 0 : hash(key.hashCode()); 
        int i = indexFor(hash, table.length); 
 
        // 若该HashMap表中存在“键值等于key”的元素,则替换该元素的value值 
        for (Entry<K,V> e = table[i]; e != null; e = e.next) { 
            Object k; 
            if (e.hash == hash && 
                ((k = e.key) == key || (key != null && key.equals(k)))) { 
                e.value = value; 
                return
            
        
 
        // 若该HashMap表中不存在“键值等于key”的元素,则将该key-value添加到HashMap中 
        createEntry(hash, key, value, i); 
    
 
    // 将“m”中的全部元素都添加到HashMap中。 
    // 该方法被内部的构造HashMap的方法所调用。 
    private void putAllForCreate(Map<? extends K, ? extends V> m) { 
        // 利用迭代器将元素逐个添加到HashMap中 
        for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) { 
            Map.Entry<? extends K, ? extends V> e = i.next(); 
            putForCreate(e.getKey(), e.getValue()); 
        
    
 
    // 重新调整HashMap的大小,newCapacity是调整后的容量 
    void resize(int newCapacity) { 
        Entry[] oldTable = table; 
        int oldCapacity = oldTable.length;
        //如果就容量已经达到了最大值,则不能再扩容,直接返回
        if (oldCapacity == MAXIMUM_CAPACITY) { 
            threshold = Integer.MAX_VALUE; 
            return
        
 
        // 新建一个HashMap,将“旧HashMap”的全部元素添加到“新HashMap”中, 
        // 然后,将“新HashMap”赋值给“旧HashMap”。 
        Entry[] newTable = new Entry[newCapacity]; 
        transfer(newTable); 
        table = newTable; 
        threshold = (int)(newCapacity * loadFactor); 
    
 
    // 将HashMap中的全部元素都添加到newTable中 
    void transfer(Entry[] newTable) { 
        Entry[] src = table; 
        int newCapacity = newTable.length; 
        for (int j = 0; j < src.length; j++) { 
            Entry<K,V> e = src[j]; 
            if (e != null) { 
                src[j] = null
                do
                    Entry<K,V> next = e.next; 
                    int i = indexFor(e.hash, newCapacity); 
                    e.next = newTable[i]; 
                    newTable[i] = e; 
                    e = next; 
                } while (e != null); 
            
        
    
 
    // 将"m"的全部元素都添加到HashMap中 
    public void putAll(Map<? extends K, ? extends V> m) { 
        // 有效性判断 
        int numKeysToBeAdded = m.size(); 
        if (numKeysToBeAdded == 0
            return
 
        // 计算容量是否足够, 
        // 若“当前阀值容量 < 需要的容量”,则将容量x2。 
        if (numKeysToBeAdded > threshold) { 
            int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1); 
            if (targetCapacity > MAXIMUM_CAPACITY) 
                targetCapacity = MAXIMUM_CAPACITY; 
            int newCapacity = table.length; 
            while (newCapacity < targetCapacity) 
                newCapacity <<= 1
            if (newCapacity > table.length) 
                resize(newCapacity); 
        
 
        // 通过迭代器,将“m”中的元素逐个添加到HashMap中。 
        for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) { 
            Map.Entry<? extends K, ? extends V> e = i.next(); 
            put(e.getKey(), e.getValue()); 
        
    
 
    // 删除“键为key”元素 
    public V remove(Object key) { 
        Entry<K,V> e = removeEntryForKey(key); 
        return (e == null ? null : e.value); 
    
 
    // 删除“键为key”的元素 
    final Entry<K,V> removeEntryForKey(Object key) { 
        // 获取哈希值。若key为null,则哈希值为0;否则调用hash()进行计算 
        int hash = (key == null) ? 0 : hash(key.hashCode()); 
        int i = indexFor(hash, table.length); 
        Entry<K,V> prev = table[i]; 
        Entry<K,V> e = prev; 
 
        // 删除链表中“键为key”的元素 
        // 本质是“删除单向链表中的节点” 
        while (e != null) { 
            Entry<K,V> next = e.next; 
            Object k; 
            if (e.hash == hash && 
                ((k = e.key) == key || (key != null && key.equals(k)))) { 
                modCount++; 
                size--; 
                if (prev == e) 
                    table[i] = next; 
                else
                    prev.next = next; 
                e.recordRemoval(this); 
                return e; 
            
            prev = e; 
            e = next; 
        
 
        return e; 
    
 
    // 删除“键值对” 
    final Entry<K,V> removeMapping(Object o) { 
        if (!(o instanceof Map.Entry)) 
            return null
 
        Map.Entry<K,V> entry = (Map.Entry<K,V>) o; 
        Object key = entry.getKey(); 
        int hash = (key == null) ? 0 : hash(key.hashCode()); 
        int i = indexFor(hash, table.length); 
        Entry<K,V> prev = table[i]; 
        Entry<K,V> e = prev; 
 
        // 删除链表中的“键值对e” 
        // 本质是“删除单向链表中的节点” 
        while (e != null) { 
            Entry<K,V> next = e.next; 
            if (e.hash == hash && e.equals(entry)) { 
                modCount++; 
                size--; 
                if (prev == e) 
                    table[i] = next; 
                else
                    prev.next = next; 
                e.recordRemoval(this); 
                return e; 
            
            prev = e; 
            e = next; 
        
 
        return e; 
    
 
    // 清空HashMap,将所有的元素设为null 
    public void clear() { 
        modCount++; 
        Entry[] tab = table; 
        for (int i = 0; i < tab.length; i++) 
            tab[i] = null
        size = 0
    
 
    // 是否包含“值为value”的元素 
    public boolean containsValue(Object value) { 
    // 若“value为null”,则调用containsNullValue()查找 
    if (value == null
            return containsNullValue(); 
 
    // 若“value不为null”,则查找HashMap中是否有值为value的节点。 
    Entry[] tab = table; 
        for (int i = 0; i < tab.length ; i++) 
            for (Entry e = tab[i] ; e != null ; e = e.next) 
                if (value.equals(e.value)) 
                    return true
    return false
    
 
    // 是否包含null值 
    private boolean containsNullValue() { 
    Entry[] tab = table; 
        for (int i = 0; i < tab.length ; i++) 
            for (Entry e = tab[i] ; e != null ; e = e.next) 
                if (e.value == null
                    return true
    return false
    
 
    // 克隆一个HashMap,并返回Object对象 
    public Object clone() { 
        HashMap<K,V> result = null
        try
            result = (HashMap<K,V>)super.clone(); 
        } catch (CloneNotSupportedException e) { 
            // assert false; 
        
        result.table = new Entry[table.length]; 
        result.entrySet = null
        result.modCount = 0
        result.size = 0
        result.init(); 
        // 调用putAllForCreate()将全部元素添加到HashMap中 
        result.putAllForCreate(this); 
 
        return result; 
    
 
    // Entry是单向链表。 
    // 它是 “HashMap链式存储法”对应的链表。 
    // 它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数 
    static class Entry<K,V> implements Map.Entry<K,V> { 
        final K key; 
        V value; 
        // 指向下一个节点 
        Entry<K,V> next; 
        final int hash; 
 
        // 构造函数。 
        // 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)" 
        Entry(int h, K k, V v, Entry<K,V> n) { 
            value = v; 
            next = n; 
            key = k; 
            hash = h; 
        
 
        public final K getKey() { 
            return key; 
        
 
        public final V getValue() { 
            return value; 
        
 
        public final V setValue(V newValue) { 
            V oldValue = value; 
            value = newValue; 
            return oldValue; 
        
 
        // 判断两个Entry是否相等 
        // 若两个Entry的“key”和“value”都相等,则返回true。 
        // 否则,返回false 
        public final boolean equals(Object o) { 
            if (!(o instanceof Map.Entry)) 
                return false
            Map.Entry e = (Map.Entry)o; 
            Object k1 = getKey(); 
            Object k2 = e.getKey(); 
            if (k1 == k2 || (k1 != null && k1.equals(k2))) { 
                Object v1 = getValue(); 
                Object v2 = e.getValue(); 
                if (v1 == v2 || (v1 != null && v1.equals(v2))) 
                    return true
            
            return false
        
 
        // 实现hashCode() 
        public final int hashCode() { 
            return (key==null   ? 0 : key.hashCode()) ^ 
                   (value==null ? 0 : value.hashCode()); 
        
 
        public final String toString() { 
            return getKey() + "=" + getValue(); 
        
 
        // 当向HashMap中添加元素时,绘调用recordAccess()。 
        // 这里不做任何处理 
        void recordAccess(HashMap<K,V> m) { 
        
 
        // 当从HashMap中删除元素时,绘调用recordRemoval()。 
        // 这里不做任何处理 
        void recordRemoval(HashMap<K,V> m) { 
        
    
 
    // 新增Entry。将“key-value”插入指定位置,bucketIndex是位置索引。 
    void addEntry(int hash, K key, V value, int bucketIndex) { 
        // 保存“bucketIndex”位置的值到“e”中 
        Entry<K,V> e = table[bucketIndex]; 
        // 设置“bucketIndex”位置的元素为“新Entry”, 
        // 设置“e”为“新Entry的下一个节点” 
        table[bucketIndex] = new Entry<K,V>(hash, key, value, e); 
        // 若HashMap的实际大小 不小于 “阈值”,则调整HashMap的大小 
        if (size++ >= threshold) 
            resize(2 * table.length); 
    
 
    // 创建Entry。将“key-value”插入指定位置。 
    void createEntry(int hash, K key, V value, int bucketIndex) { 
        // 保存“bucketIndex”位置的值到“e”中 
        Entry<K,V> e = table[bucketIndex]; 
        // 设置“bucketIndex”位置的元素为“新Entry”, 
        // 设置“e”为“新Entry的下一个节点” 
        table[bucketIndex] = new Entry<K,V>(hash, key, value, e); 
        size++; 
    
 
    // HashIterator是HashMap迭代器的抽象出来的父类,实现了公共了函数。 
    // 它包含“key迭代器(KeyIterator)”、“Value迭代器(ValueIterator)”和“Entry迭代器(EntryIterator)”3个子类。 
    private abstract class HashIterator<E> implements Iterator<E> { 
        // 下一个元素 
        Entry<K,V> next; 
        // expectedModCount用于实现fast-fail机制。 
        int expectedModCount; 
        // 当前索引 
        int index; 
        // 当前元素 
        Entry<K,V> current; 
 
        HashIterator() { 
            expectedModCount = modCount; 
            if (size > 0) { // advance to first entry 
                Entry[] t = table; 
                // 将next指向table中第一个不为null的元素。 
                // 这里利用了index的初始值为0,从0开始依次向后遍历,直到找到不为null的元素就退出循环。 
                while (index < t.length && (next = t[index++]) == null
                    
            
        
 
        public final boolean hasNext() { 
            return next != null
        
 
        // 获取下一个元素 
        final Entry<K,V> nextEntry() { 
            if (modCount != expectedModCount) 
                throw new ConcurrentModificationException(); 
            Entry<K,V> e = next; 
            if (e == null
                throw new NoSuchElementException(); 
 
            // 注意!!! 
            // 一个Entry就是一个单向链表 
            // 若该Entry的下一个节点不为空,就将next指向下一个节点; 
            // 否则,将next指向下一个链表(也是下一个Entry)的不为null的节点。 
            if ((next = e.next) == null) { 
                Entry[] t = table; 
                while (index < t.length && (next = t[index++]) == null
                    
            
            current = e; 
            return e; 
        
 
        // 删除当前元素 
        public void remove() { 
            if (current == null
                throw new IllegalStateException(); 
            if (modCount != expectedModCount) 
                throw new ConcurrentModificationException(); 
            Object k = current.key; 
            current = null
            HashMap.this.removeEntryForKey(k); 
            expectedModCount = modCount; 
        
 
    
 
    // value的迭代器 
    private final class ValueIterator extends HashIterator<V> { 
        public V next() { 
            return nextEntry().value; 
        
    
 
    // key的迭代器 
    private final class KeyIterator extends HashIterator<K> { 
        public K next() { 
            return nextEntry().getKey(); 
        
    
 
    // Entry的迭代器 
    private final class EntryIterator extends HashIterator<Map.Entry<K,V>> { 
        public Map.Entry<K,V> next() { 
            return nextEntry(); 
        
    
 
    // 返回一个“key迭代器” 
    Iterator<K> newKeyIterator()   { 
        return new KeyIterator(); 
    
    // 返回一个“value迭代器” 
    Iterator<V> newValueIterator()   { 
        return new ValueIterator(); 
    
    // 返回一个“entry迭代器” 
    Iterator<Map.Entry<K,V>> newEntryIterator()   { 
        return new EntryIterator(); 
    
 
    // HashMap的Entry对应的集合 
    private transient Set<Map.Entry<K,V>> entrySet = null
 
    // 返回“key的集合”,实际上返回一个“KeySet对象” 
    public Set<K> keySet() { 
        Set<K> ks = keySet; 
        return (ks != null ? ks : (keySet = new KeySet())); 
    
 
    // Key对应的集合 
    // KeySet继承于AbstractSet,说明该集合中没有重复的Key。 
    private final class KeySet extends AbstractSet<K> { 
        public Iterator<K> iterator() { 
            return newKeyIterator(); 
        
        public int size() { 
            return size; 
        
        public boolean contains(Object o) { 
            return containsKey(o); 
        
        public boolean remove(Object o) { 
            return HashMap.this.removeEntryForKey(o) != null
        
        public void clear() { 
            HashMap.this.clear(); 
        
    
 
    // 返回“value集合”,实际上返回的是一个Values对象 
    public Collection<V> values() { 
        Collection<V> vs = values; 
        return (vs != null ? vs : (values = new Values())); 
    
 
    // “value集合” 
    // Values继承于AbstractCollection,不同于“KeySet继承于AbstractSet”, 
    // Values中的元素能够重复。因为不同的key可以指向相同的value。 
    private final class Values extends AbstractCollection<V> { 
        public Iterator<V> iterator() { 
            return newValueIterator(); 
        
        public int size() { 
            return size; 
        
        public boolean contains(Object o) { 
            return containsValue(o); 
        
        public void clear() { 
            HashMap.this.clear(); 
        
    
 
    // 返回“HashMap的Entry集合” 
    public Set<Map.Entry<K,V>> entrySet() { 
        return entrySet0(); 
    
 
    // 返回“HashMap的Entry集合”,它实际是返回一个EntrySet对象 
    private Set<Map.Entry<K,V>> entrySet0() { 
        Set<Map.Entry<K,V>> es = entrySet; 
        return es != null ? es : (entrySet = new EntrySet()); 
    
 
    // EntrySet对应的集合 
    // EntrySet继承于AbstractSet,说明该集合中没有重复的EntrySet。 
    private final class EntrySet extends AbstractSet<Map.Entry<K,V>> { 
        public Iterator<Map.Entry<K,V>> iterator() { 
            return newEntryIterator(); 
        
        public boolean contains(Object o) { 
            if (!(o instanceof Map.Entry)) 
                return false
            Map.Entry<K,V> e = (Map.Entry<K,V>) o; 
            Entry<K,V> candidate = getEntry(e.getKey()); 
            return candidate != null && candidate.equals(e); 
        
        public boolean remove(Object o) { 
            return removeMapping(o) != null
        
        public int size() { 
            return size; 
        
        public void clear() { 
            HashMap.this.clear(); 
        
    
 
    // java.io.Serializable的写入函数 
    // 将HashMap的“总的容量,实际容量,所有的Entry”都写入到输出流中 
    private void writeObject(java.io.ObjectOutputStream s) 
        throws IOException 
    
        Iterator<Map.Entry<K,V>> i = 
            (size > 0) ? entrySet0().iterator() : null
 
        // Write out the threshold, loadfactor, and any hidden stuff 
        s.defaultWriteObject(); 
 
        // Write out number of buckets 
        s.writeInt(table.length); 
 
        // Write out size (number of Mappings) 
        s.writeInt(size); 
 
        // Write out keys and values (alternating) 
        if (i != null) { 
            while (i.hasNext()) { 
            Map.Entry<K,V> e = i.next(); 
            s.writeObject(e.getKey()); 
            s.writeObject(e.getValue()); 
            
        
    
 
    private static final long serialVersionUID = 362498820763181265L; 
 
    // java.io.Serializable的读取函数:根据写入方式读出 
    // 将HashMap的“总的容量,实际容量,所有的Entry”依次读出 
    private void readObject(java.io.ObjectInputStream s) 
         throws IOException, ClassNotFoundException 
    
        // Read in the threshold, loadfactor, and any hidden stuff 
        s.defaultReadObject(); 
 
        // Read in number of buckets and allocate the bucket array; 
        int numBuckets = s.readInt(); 
        table = new Entry[numBuckets]; 
 
        init();  // Give subclass a chance to do its thing. 
 
        // Read in size (number of Mappings) 
        int size = s.readInt(); 
 
        // Read the keys and values, and put the mappings in the HashMap 
        for (int i=0; i<size; i++) { 
            K key = (K) s.readObject(); 
            V value = (V) s.readObject(); 
            putForCreate(key, value); 
        
    
 
    // 返回“HashMap总的容量” 
    int   capacity()     { return table.length; } 
    // 返回“HashMap的加载因子” 
    float loadFactor()   { return loadFactor;   } 
}
1、首先要清楚HashMap的存储结构,如下图所示:

图中,紫色部分即代表哈希表,也称为哈希数组,数组的每个元素都是一个单链表的头节点,链表是用来解决冲突的,如果不同的key映射到了数组的同一位置处,就将其放入单链表中。

2、首先看链表中节点的数据结构:

// Entry是单向链表。 
// 它是 “HashMap链式存储法”对应的链表。 
// 它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数 
static class Entry<K,V> implements Map.Entry<K,V> { 
    final K key; 
    V value; 
    // 指向下一个节点 
    Entry<K,V> next; 
    final int hash; 
 
    // 构造函数。 
    // 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)" 
    Entry(int h, K k, V v, Entry<K,V> n) { 
        value = v; 
        next = n; 
        key = k; 
        hash = h; 
    
 
    public final K getKey() { 
        return key; 
    
 
    public final V getValue() { 
        return value; 
    
 
    public final V setValue(V newValue) { 
        V oldValue = value; 
        value = newValue; 
        return oldValue; 
    
 
    // 判断两个Entry是否相等 
    // 若两个Entry的“key”和“value”都相等,则返回true。 
    // 否则,返回false 
    public final boolean equals(Object o) { 
        if (!(o instanceof Map.Entry)) 
            return false
        Map.Entry e = (Map.Entry)o; 
        Object k1 = getKey(); 
        Object k2 = e.getKey(); 
        if (k1 == k2 || (k1 != null && k1.equals(k2))) { 
            Object v1 = getValue(); 
            Object v2 = e.getValue(); 
            if (v1 == v2 || (v1 != null && v1.equals(v2))) 
                return true
        
        return false
    
 
    // 实现hashCode() 
    public final int hashCode() { 
        return (key==null   ? 0 : key.hashCode()) ^ 
               (value==null ? 0 : value.hashCode()); 
    
 
    public final String toString() { 
        return getKey() + "=" + getValue(); 
    
 
    // 当向HashMap中添加元素时,绘调用recordAccess()。 
    // 这里不做任何处理 
    void recordAccess(HashMap<K,V> m) { 
    
 
    // 当从HashMap中删除元素时,绘调用recordRemoval()。 
    // 这里不做任何处理 
    void recordRemoval(HashMap<K,V> m) { 
    
}
它的结构元素除了key、value、hash外,还有next,next指向下一个节点。另外,这里覆写了equals和hashCode方法来保证键值对的独一无二。

3、HashMap共有四个构造方法。构造方法中提到了两个很重要的参数:初始容量和加载因子。这两个参数是影响HashMap性能的重要参数,其中容量表示哈希表中槽的数量(即哈希数组的长度),初始容量是创建哈希表时的容量(从构造函数中可以看出,如果不指明,则默认为16),加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 resize 操作(即扩容)。

下面说下加载因子,如果加载因子越大,对空间的利用更充分,但是查找效率会降低(链表长度会越来越长);如果加载因子太小,那么表中的数据将过于稀疏(很多空间还没用,就开始扩容了),对空间造成严重浪费。如果我们在构造方法中不指定,则系统默认加载因子为0.75,这是一个比较理想的值,一般情况下我们是无需修改的。

另外,无论我们指定的容量为多少,构造方法都会将实际容量设为不小于指定容量的2的次方的一个数,且最大值不能超过2的30次方

4、HashMap中key和value都允许为null。

posted @ 2016-12-15 10:43  江洋小盗  阅读(266)  评论(0编辑  收藏  举报