时间序列分析习题解答(2):上课展示的典型题

由于本答案由少部分人完成,难免存在错误,如有不同意见欢迎在评论区提出。

第一题

一、已知零均值平稳序列\(\{X_t\}\)的自协方差函数为

\[\gamma_0=1,\quad \gamma_{\pm 1}=\rho,\quad \gamma_k=0,|k|\ge 2. \]

  1. 计算\(\{X_t\}\)的偏相关系数\(a_{1,1}\)\(a_{2,2}\)
  2. 计算最佳线性预测\(L(X_3|X_2)\)\(L(X_3|X_2,X_1)\)
  3. 计算预测的均方误差\(\mathbb{E}[X_3-L(X_3|X_2)]^2\)\(\mathbb{E}[X_3-L(X_3|X_2,X_1)]^2\)
  4. 证明:\(\rho\)应满足\(|\rho|\le \frac{1}{2}\)
  5. \(\rho=0.4\),计算\(\{X_t\}\)的谱密度函数,给出\(\{X_t\}\)所满足的模型。

解:(1)由Yule-Walker方程,\(a_{1,1}=\gamma_1/\gamma_0=\rho\)

\[\begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}\begin{bmatrix} a_{2,1} \\ a_{2,2} \end{bmatrix}=\begin{bmatrix} \rho \\ 0 \end{bmatrix}, \]

解得

\[a_{2,2}=-\frac{\rho^2}{1-\rho^2}. \]

(2)由预测方程,有\(L(X_3|X_2)=\rho X_2\)。设\(L(X_3|X_2,X_1)=a_2X_2+a_1X_1\),则

\[\begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}\begin{bmatrix} a_{1} \\ a_2 \end{bmatrix}=\begin{bmatrix} 0 \\ \rho \end{bmatrix},\\ a_1=-\frac{\rho^2}{1-\rho^2},\quad a_2=\frac{\rho}{1-\rho^2}. \]

所以

\[L(X_3|X_2,X_1)=\frac{-\rho^2X_1+\rho X_2}{1-\rho^2}. \]

(3)预测的均方误差是

\[\mathbb{E}(X_3-\rho X_2)^2=(1+\rho^2)\gamma_0-2\rho\gamma_1=1-\rho^2,\\ \begin{aligned} &\quad \mathbb{E}\left(X_3-\frac{-\rho^2X_1+\rho X_2}{1-\rho^2} \right)^2 \\ &=\left[\frac{(1-\rho^2)^2+\rho^4+\rho^2}{(1-\rho^2)^2}\right]-2\rho\left[\frac{\rho^3+\rho(1-\rho^2)}{(1-\rho^2)^2} \right]\\ &=\frac{2\rho^4-3\rho^2+1}{(1-\rho^2)^2}\\ &=\frac{1-2\rho^2}{1-\rho^2}. \end{aligned} \]

(4)由于\(\{X_t\}\)的自协方差函数1后截尾,所以它是一个\({\rm MA}(1)\)模型,即存在\(b \le 1\),白噪声\(\varepsilon_t\sim {\rm WN}(0,\sigma^2)\)使得

\[X_t=\varepsilon_t+b\varepsilon_{t-1}. \]

于是

\[\gamma_0=(1+b^2)\sigma^2=1,\\ \gamma_1=b\sigma^2=\rho, \]

所以

\[\rho(b)=\frac{b}{1+b^2}, \]

\(b\in[-1,1]\)\(\rho(b)\)是单调的,所以

\[-\frac{1}{2}\le \rho(-1)\le \rho\le \rho(1)=\frac12. \]

(5)由谱密度反演公式,容易得到

\[\begin{aligned} f(\lambda)&=\frac{1}{2\pi}\left[1+0.8\cos\lambda \right]\\ &=\frac{1}{2\pi}\left[\frac{4}{5}\left(1+\cos \lambda+\frac{1}{4} \right) \right]\\ &=\frac{(2/\sqrt{5})^2}{2\pi}\left|1+\frac{1}{2}(e^{{\rm i}\lambda}) \right|^2. \end{aligned} \]

所以

\[X_t=\varepsilon_t+\frac{1}{2}\varepsilon_{t-1},\quad \{\varepsilon_t\}\sim {\rm WN}\left(0,\frac{4}{5}\right). \]

第二题

二、设零均值平稳序列\(\{X_t\}\)的自协方差函数满足

\[\gamma_k=\frac{18}{7}\times\left(\frac{2}{5} \right)^{|k|},k\ne 0,k\in\mathbb{Z}. \]

  1. \(\gamma_0\)取何值时,该序列为\({\rm AR}(1)\)序列?说明理由并给出相应的模型。
  2. \(\gamma_0=\frac{11}{7}\),该序列为\({\rm ARMA}(1, 1)\)序列吗?说明理由并给出相应的模型。

解:为\({\rm AR}(1)\)序列的充要条件是

\[\gamma_k-a\gamma_{k-1}=0,\quad \forall k\ge 1. \]

\(k=2\)时,解得\(a=\frac{2}{5}\),所以当\(k=1\)时,有

\[\gamma_1=\frac{2}{5}\gamma_0=\frac{36}{35}, \]

\(\gamma_0=\frac{18}{7}\)。此时,定义\(a=\frac{2}{5}\),令\(\varepsilon_t=X_t-aX_{t-1}\),有\(\mathbb{E}(\varepsilon_t)=0\)。对\(\forall t>s\)

\[\begin{aligned} \mathbb{E}(\varepsilon_tX_s)&=\mathbb{E}\left[(X_t-aX_{t-1})X_s \right]\\ &=\gamma_{t-s}-a\gamma_{t-s-1}\\ &=0;\\ \mathbb{E}(\varepsilon_t\varepsilon_s)&=\mathbb{E}[\varepsilon_t(X_{s}-aX_{s-1})]=0,\\ \mathbb{E}(\varepsilon_t^2)&=\mathbb{E}[(X_t-aX_{t-1})^2]\\ &=\frac{18}{7}(1-a^2)\\ &=\frac{54}{25}. \end{aligned} \]

\(\{\varepsilon_t\}\sim {\rm WN}(0,\frac{54}{25})\)。此时

\[X_t=aX_{t-1}+\varepsilon_t, \]

所以\(\{X_t\}\)\({\rm AR}(1)\)序列。

(2)此时令\(Y_t=X_t-aX_{t-1}\),有

\[\begin{aligned} \mathbb{E}(Y_t^2)&=\gamma_0(1+a^2)-2a\gamma_1\\ &=\frac{11}{7}\frac{29}{25}-\frac{4}{5}\frac{36}{35}\\ &=1,\\ \mathbb{E}(Y_tY_{t-1})&=(1+a^2)\gamma_1-a(\gamma_0+\gamma_2)\\ &=\frac{29}{25}\frac{36}{35}-\frac{2}{5}\frac{347}{175}\\ &=\frac{2}{5},\\ \end{aligned} \]

\(k\ge 2\)时,可以验证

\[\mathbb{E}(Y_tY_{t-k})=(1+a^2)\gamma_k-a(\gamma_{k-1}+\gamma_{k+1})=(\gamma_k-a\gamma_{k-1})-a(\gamma_{k+1}-\gamma_k)=0. \]

所以\(\{Y_t\}\)的自协方差函数1后截尾,是一个\({\rm MA}(1)\)序列,容易得出其模型系数为\(b=\frac{1}{2}\)\(\sigma^2=\frac{4}{5}\),所以原模型是一个\({\rm ARMA}(1,1)\)模型,满足

\[X_t=\frac{2}{5}X_{t-1}+\varepsilon_t+\frac{1}{2}\varepsilon_{t-1},\quad\{\varepsilon_t\}\sim {\rm WN}(0,\sigma^2). \]

第三题

三、已知零均值平稳序列\(\{X_t\}\),其自协方差函数满足

\[\gamma_0=1.2,\quad \gamma_k=0.9\gamma_{k-1}-0.2\gamma_{k-2},\quad k\ge 1. \]

求证:\(\{X_t\}\)是一个\({\rm AR}(2)\)序列,并给出\({\rm AR}(2)\)模型。

解:构造辅助序列为

\[\epsilon_t=X_t-0.9X_{t-1}+0.2X_{t-2},\quad t\in\mathbb{Z}. \]

则当\(t>s\)时,

\[\begin{aligned} \mathbb{E}(\epsilon_tX_s)& =\mathbb{E}[X_s(X_t-0.9X_{t-1}+0.2X_{t-2})]\\ &=\gamma_{t-s}-0.9\gamma_{t-s-1}+0.2\gamma_{t-s-2}\\ &=0,\\ \mathbb{E}(\epsilon_t\epsilon_s)&=\mathbb{E}[\epsilon_t(X_s-0.9X_{s-1}+0.2X_{s-2})]\\ &=0.\\ \mathbb{E}(\epsilon_t^2)&=\mathbb{E}[(X_t-0.9X_{t-1}+0.2X_{t-2})^2]\\ &=(1+0.81+0.04)\gamma_0-2(0.9+0.18)\gamma_1+0.4\gamma_2\\ &=1.85\gamma_0-2.16\gamma_1+0.4\gamma_2. \end{aligned} \]

\[\gamma_0=1.2,\\ \gamma_1=0.9\gamma_0-0.2\gamma_{-1},\quad \gamma_1=0.9,\\ \gamma_2=0.9\gamma_1-0.2\gamma_0=0.57. \]

所以\(\mathbb{D}(\epsilon_t)=0.504\),满足的\({\rm AR}(2)\)模型是

\[X_t=0.9X_{t-1}-0.2X_{t-2}+\epsilon_t,\quad \{\epsilon_t\}\sim {\rm WN}(0,0.504). \]

第四题

四、设平稳序列\(\{X_t\}\)\({\rm MA}(1)\)过程,满足

\[X_t=\varepsilon_t+0.5\varepsilon_{t-1},\quad \varepsilon_t\sim {\rm WN}(0,1). \]

\(\{X_t\}\)的一步预报为

\[\left\{\begin{array}l \hat X_1=0, \\ \hat X_2=\theta_{1,1}(X_1-\hat X_1), \\ \hat X_3=\theta_{2,1}(X_2-\hat X_2)+\theta_{2,2}(X_1-\hat X_1). \end{array}\right. \]

均方误差为\(\nu_n=\mathbb{E}(X_{n+1}-\hat X_{n+1})^2\),求常数\(\theta_{1,1},\theta_{2,1},\theta_{2,2}\)\(\nu_0,\nu_1,\nu_2\)

解:设\(b=0.5\)\(Z_n=X_n-\hat X_n\),则

\[\begin{aligned} \hat X_2&=\theta_{1,1}Z_1, \\ \nu_0&=\mathbb{E}(X_1^2)=1+b^2 \\ \mathbb{E}(\hat X_2Z_1)&=\theta_{1,1}\nu_0=\mathbb{E}(X_2X_1)=b,\\ \theta_{1,1}&=\frac{b}{1+b^2},\\ \nu_1&=\mathbb{E}(X_2-\theta_{1,1}Z_1)^2 \\ &=\gamma_0-\theta_{1,1}^2\mathbb{E}(Z_1^2)\\ &=\frac{1+b^2+b^4}{1+b^2},\\ \hat X_3&=\theta_{2,1}Z_2+\theta_{2,2}Z_1,\\ \mathbb{E}(\hat X_3Z_1)&=\theta_{2,2}\nu_0=\mathbb{E}(X_3X_1)=0,\\ \mathbb{E}(\hat X_3Z_2)&=\theta_{2,1}\nu_1\\ &=\mathbb{E}[X_3(X_2-\theta_{1,1}Z_1)]\\ &=\gamma_1-\theta_{1,1}\mathbb{E}(X_3Z_1)\\ &=b,\\ \theta_{2,1}&=\frac{b}{\nu_1}=\frac{b(1+b^2)}{1+b^2+b^4},\\ \nu_2&=\gamma_0-\theta_{2,1}^2\nu_1^2=\frac{1+b^2+b^4+b^6}{1+b^2+b^4}. \end{aligned} \]

代入\(b=0.5\),计算得到

\[\theta_{1,1}=\frac{2}{5},\theta_{2,2}=0,\theta_{2,1}=\frac{10}{21},\\ \nu_0=\frac{5}{4},\nu_1=\frac{21}{20},\nu_2=\frac{85}{84}. \]

第五题

五、设\(\{X_t\}\)满足模型\(X_t-aX_{t-1}=\varepsilon_t\),其中\(0<a<1\)\(\{\varepsilon_t\}\)为标准正态白噪声。

  1. 已知观测样本\(x_1,x_2,\cdots,x_n\),求参数\(a\)的极大似然估计。
  2. 证明\(\{X_t\}\)是纯非决定性平稳序列。
  3. \(\bar X_n=\frac{1}{n}\sum_{k=1}^n X_k\),问\(\bar X_n\)是否依概率收敛?

解:(1)样本残差序列为

\[\hat \varepsilon_t=x_t-ax_{t-1},\quad t\ge 2, \]

所以似然函数为

\[L(a)=\frac{1}{(2\pi)^{\frac{n-1}{2}}}\exp\left[-\frac{1}{2}\sum_{t=2}^n(x_t-ax_{t-1})^2 \right],\\ l(a)=C-\frac{1}{2}\sum_{t=2}^n(x_t-ax_{t-1})^2, \\ \frac{{\rm d}l(a)}{{\rm d}a}=\sum_{t=2}^nx_{t-1}(x_t-ax_{t-1})=0, \]

得到

\[\hat a=\frac{\sum_{t=2}^nx_tx_{t-1}}{\sum_{t=2}^nx_{t-1}^2}. \]

(2)\({\rm AR}(1)\)序列有Wold展开式为

\[X_t=\sum_{j=0}^\infty a_j\varepsilon_{t-j},\quad t\in \mathbb{Z}. \]

定义\(H_n=\overline{\text{sp}}(X_n,X_{n-1},\cdots)\)\(M_n=\overline{\text{sp}}(\varepsilon_n,\varepsilon_{n-1},\cdots)\),则\(H_n=M_n\)

\[\begin{aligned} \sigma_k^2&=\lim_{m\to \infty}\sigma_{k,m}^2\\ &=\lim_{m\to \infty}\mathbb{E}[X_{n+k}-L(X_{n+k}|X_n,X_{n-1},\cdots,X_{m+1})]^2\\ &=\lim_{m\to \infty}\mathbb{E}[X_k-L(X_k|X_0,X_{-1},\cdots,X_{-m+1})]\\ &=\mathbb{E}[X_k-L(X_k|H_0)]^2\\ &=\mathbb{E}[X_k-L(X_k|M_0)]^2 \\ &=\mathbb{E}\left(\sum_{j=0}^{k-1} a_k\varepsilon_{k-j} \right)^2 \\ &=\sum_{j=0}^{k-1} a_j^2. \end{aligned} \]

\(\{X_k\}\)是纯非决定性平稳序列。

(3)对\(\bar X_n\)进行变形,得到

\[\begin{aligned} \bar X_n&=\frac{X_1+X_2+\cdots+X_n}{n} \\ &=\frac{a(X_0-X_n)+\varepsilon_1+\cdots+\varepsilon_n}{n(1-a)}\\ &=\frac{a(X_0-X_n)}{n(1-a)}+\frac{1}{n(1-a)}\sum_{j=1}^n\varepsilon_j. \end{aligned} \]

对前一部分,

\[\mathbb{P}\left(\frac{a|X_0-X_n|}{n(1-a)}>\epsilon \right)\le \frac{a^2\mathbb{D}(X_0-X_n)}{\epsilon^2n^2(1-a^2)}\to 0,\\ \]

对后一部分,由于\(\sum_{j=1}^n\varepsilon_j\sim N(0,n)\),所以

\[\mathbb{P}\left(\frac{|\sum_{j=1}^n\varepsilon_j|}{n(1-a)}>\epsilon \right)\le \frac{1}{\epsilon^2n(1-a)^2}\to 0, \]

所以\(\bar X_n\)也依概率收敛于0。

或者使用\(\gamma_k\to 0\)的性质来证明均值的均方收敛性。

posted @ 2021-01-24 20:42  江景景景页  阅读(1524)  评论(0编辑  收藏  举报