时间序列分析习题解:2016~2017真题

第一题

一、设\(\{X_t\}\)满足\({\rm AR}(2)\)模型\(X_t-a_1X_{t-1}-0.2X_{t-2}=\varepsilon_t\),其中\(\{\varepsilon_t\}\sim {\rm WN}(0,1)\)

  1. 实数\(a_1\)应该满足什么条件?
  2. 已知\(a_1=0.1\),计算\(\{X_t\}\)的自相关函数\(\{\rho_k\}\)
  3. 已知观测样本\(x_1,\cdots,x_n\),求参数\(a_1\)的极大似然估计。

解:(1)\({\rm AR}(2)\)模型的稳定域是

\[|a_2|<1,\quad a_2\pm a_1<1, \]

这里\(a_2=0.2\),即

\[0.2-a_1<1,\quad 0.2+a_1<1, \]

解得\(a_1\in(-0.8,0.8)\)

(2)由于

\[\rho_1=\frac{a_1}{1-a_2}=\frac{1}{8} \]

特征方程为\(A(z)=1-0.1z-0.2z^2\),构造方程\(f(\lambda)=\lambda^2-0.1\lambda-0.2\),其两根为\(\lambda_1=0.5\)\(\lambda_2=-0.4\),所以

\[\rho_k=c_1\lambda_1^k+c_2\lambda_2^k,\\ c_1+c_2=1,\\ 0.5c_1-0.4c_2=\frac{1}{8}. \]

解得\(c_1=\frac{7}{12},c_2=\frac{5}{12}\),即

\[\rho_k=\frac{7}{12}\cdot\left(\frac{1}{2}\right)^k+\frac{5}{12}\cdot\left(-\frac{2}{5} \right)^k. \]

(3)由于\(\varepsilon_t\sim N(0,1)\),残差序列为\(\hat\varepsilon_t=x_t-a_1x_{t-1}-0.2x_{t-2}\),这里\(t=3,\cdots,n\),故似然函数为

\[L(a_1)=\frac{1}{(2\pi)^{\frac{n-2}{2}}}\exp\left[-\frac{1}{2}\sum_{j=3}^n(x_t-a_1x_{t-1}-0.2x_{t-2})^2 \right],\\ l(a_1)=C-\frac{1}{2}\sum_{j=3}^n(x_t-a_1x_{t-1}-0.2x_{t-2})^2,\\ \frac{{\rm d}l(a_1)}{{\rm d}a_1}=\sum_{j=3}^nx_{t-1}(x_t-a_1x_{t-1}-0.2x_{t-2})=0, \]

解得

\[a_1=\frac{\sum_{j=3}^{n}(x_{t-1}x_t-0.2x_{t-1}x_{t-2})}{\sum_{j=3}^nx_{t-1}^2}. \]


第二题

二、设序列\(\{X_t\}\)满足模型\(X_t=b^2\varepsilon_t+b\varepsilon_{t-1},b>0\)\(\{\varepsilon_t\}\sim {\rm WN}(0,1)\)

  1. 证明\(\{X_t\}\)是平稳序列;
  2. 给出\(\{X_t\}\)的谱密度\(f(\lambda)\)
  3. 序列\(\{X_t\}\)能否为\({\rm MA}(1)\)?若可以,给出所满足的模型。

解:(1)\(\mathbb{E}(X_t)=0\)\(\mathbb{D}(X_t)=b^4+b^2\),当\(k=1\)时,

\[\mathbb{E}(X_tX_{t-1})=\mathbb{E}(b^2\varepsilon_t+b\varepsilon_{t-1})(b^2\varepsilon_{t-1}+b\varepsilon_{t-2})=b^3. \]

\(k\ge 2\)\(\mathbb{E}(X_tX_{t+k})=0\),所以

\[\gamma_k=\left\{\begin{array}l b^2+b^4,& k=0, \\ b^3,& k=\pm1,\\ 0,& \text{otherwise}. \\ \end{array}\right. \]

证明\(\{X_t\}\)是一个平稳序列。

(2)由谱密度反演公式,

\[\begin{aligned} f(\lambda)&=\frac{1}{2\pi}\sum_{j=-1}^j\gamma_je^{-{\rm i}j\lambda}\\ &=\frac{1}{2\pi}(b^2+b^4+b^3(e^{{\rm i}\lambda}+e^{-{\rm i}\lambda}))\\ &=\frac{b^2}{2\pi}\left[1+2b\cos \lambda+b^2 \right]\\ &=\frac{b^2}{2\pi}\left|1+be^{{\rm i}\lambda} \right|^2=\frac{b^2}{2\pi}\left|b+e^{{\rm i}\lambda} \right|^2\\ &=\frac{b^4}{2\pi}\left|1+\frac{1}{b}e^{{\rm i}\lambda} \right|^2. \end{aligned} \]

(3)可以:当\(b\le 1\)时,满足的模型为

\[X_t=\epsilon_t+b\epsilon_{t-1},\quad \{\epsilon_t\}\sim {\rm WN}(0,b^2),\\ \]

\(b>1\)时,满足的模型为

\[X_t=\eta_t+\frac{1}{b}\eta_{t-1},\quad \{\eta_t\}\sim {\rm WN}(0,b^4). \]

下面对\(b<1\)的情形进行验证,此时令\(B(z)=1+bz\),它在\(|z|\le 1\)上没有根,

\[\epsilon_t=B^{-1}(\mathscr B)X_t,\\ f_\varepsilon(\lambda)=\frac{1}{|B(e^{{\rm i}\lambda})|^2}f(\lambda)=\frac{b^2}{2\pi}. \]

所以\(\{\epsilon_t\}\sim {\rm WN}(0,\sigma^2)\),对\(b>1\)时可以类似证明。当\(b=1\)时,\(X_t\)本身已经是一个\({\rm MA}(1)\)模型。


第三题

三、已知零均值平稳序列\(\{X_t\}\)的自协方差函数为\(\{\gamma_k\}\),满足\(\gamma_0\),且当\(k\to \infty\)\(\gamma_k\to 0\)

  1. 证明\(\Gamma_2\)可逆。
  2. 计算\(\{X_t\}\)的偏相关系数\(a_{1,1},a_{2,2}\)
  3. \(Y_1=X_1-L(X_1|X_2)\)\(Y_2=X_3-L(X_3|X_2)\)\(\rho_{Y_1Y_2}\)表示它们之间的相关系数,证明\(a_{2,2}=\rho_{Y_1Y_2}\)

解:(1)\(\gamma_0>0\)\(\Gamma_1\)可逆。

假定\(\Gamma_2\)不可逆,则存在一个\(\beta=(1,b)\)\(b\ne 0\),使得\(\mathbb{D}(X_1+bX_2)=\beta'\Gamma_2\beta=0\),这等价于\(X_2\)可以被\(X_1\)线性表示。由时间序列的平稳性,\(X_k\)都可以被\(X_1\)线性表示,即\(X_k=b^kX_1\)。由时间序列的平稳性,有

\[\mathbb{E}(X_k^2)=b^{2k}\mathbb{E}(X_1^2)\Rightarrow (1-b^{2k})=0,\quad \forall k. \]

因此\(b=\pm 1\)。但此时\(X_1=(-1)^{k-1}X_k\),所以

\[\gamma_k=\mathbb{E}(X_1X_{k+1})=(-1)^{k-1}\gamma_0, \]

\(\gamma_k\to 0\)矛盾。

(2)由Yule-Walker方程,\(a_{1,1}=\gamma_1/\gamma_0\)

\[\begin{bmatrix} \gamma_0 & \gamma_1 \\ \gamma_1 & \gamma_0 \end{bmatrix}\begin{bmatrix} a_{2,1} \\ a_{2,2} \end{bmatrix}=\begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix}, \]

所以

\[a_{2,2}=\frac{\gamma_0\gamma_2-\gamma_1^2}{\gamma_0^2-\gamma_1^2}. \]

(3)由预测方程,

\[L(X_1|X_2)=\frac{\gamma_1}{\gamma_0}X_2,\quad L(X_3|X_2)=\frac{\gamma_1}{\gamma_0}X_2, \]

所以

\[\begin{aligned} {\rm Cov}(Y_1,Y_2)&={\rm Cov}(X_1,X_3)-\frac{\gamma_1}{\gamma_0}{\rm Cov}(X_1,X_2)-\frac{\gamma_1}{\gamma_0}{\rm Cov}(X_2,X_3)+\frac{\gamma_1^2}{\gamma_0^2}{\rm Cov}(X_1,X_3)\\ &=\gamma_2-2\rho_1\gamma_1+\rho_1^2\gamma_2, \end{aligned} \]

\[\mathbb{D}(Y_1)=\mathbb{D}(Y_2)=\gamma_0+\rho_1^2\gamma_0-2\rho_1\gamma_1, \]

所以

\[\rho_{Y_1Y_2}=\frac{\gamma_2-2\rho\gamma_1+\rho_1^2\gamma_2}{\gamma_0-2\rho_1\gamma_1+\rho_1^2\gamma_0}=\frac{\rho_2-\rho_1^2}{1-\rho_1^2}=\frac{\gamma_0\gamma_2-\gamma_1^2}{\gamma_0^2-\gamma_1^2}=a_{2,2}. \]


第四题

四、设\(\{X_t\}\)满足\({\rm AR}(1)\)模型\(X_t-aX_{t-1}=\varepsilon_t\),其中\(\{\varepsilon_t\}\sim {\rm WN}(0,1)\),设\(\{\eta_t\}\)是和\(\{\varepsilon_t\}\)独立的\({\rm WN}(0,1)\),令\(Y_t=X_t+\eta_t\)

  1. \(L(Y_3|\varepsilon_1+\eta_1,\varepsilon_2+\eta_2)=L(Y_3|\varepsilon_1,\varepsilon_2)+L(Y_3|\eta_1,\eta_2)\)成立吗?说明理由。
  2. 证明\(\{Y_t\}\)\({\rm ARMA}(1, 1)\)序列。

解:(1)由于\(\varepsilon_1,\varepsilon_2,\eta_1,\eta_2\)相互独立,所以

\[L(Y_3|\varepsilon_1,\varepsilon_2)+L(Y_3|\eta_1,\eta_2)=L(Y_3|\varepsilon_1,\varepsilon_2,\eta_1,\eta_2),\\ Y_3=X_3+\eta_3=a^3X_0+a^2\varepsilon_1+a\varepsilon_2+\varepsilon_3+\eta_3. \]

\(\upsilon=(\varepsilon_1,\varepsilon_2,\eta_1,\eta_2)'\),则\(\mathbb{D}(\upsilon)=I_4\),由预测方程,预测系数为

\[\boldsymbol \alpha=\mathbb{E}(\upsilon Y_3)=\begin{bmatrix} a^2 \\ a \\ 0 \\ 0 \end{bmatrix}, \]

\(\epsilon=(\varepsilon_1+\eta_1,\varepsilon_2+\eta_2)\),则\(\mathbb{D}(\epsilon)=2I_2\),由预测方程,预测系数为

\[\boldsymbol\beta=\mathbb{E}(\epsilon Y_3)=\begin{bmatrix} \frac{1}{2}a^2 \\ \frac{1}{2}a \end{bmatrix}. \]

所以

\[L(Y_3|\varepsilon_1+\eta_1,\varepsilon_1+\varepsilon_2)=\frac{a^2}{2}(\varepsilon_1+\eta_1)+\frac{a}{2}(\varepsilon_2+\eta_2)\ne a^2\varepsilon_1+a\varepsilon_2=L(Y_3|\varepsilon_1,\varepsilon_2,\eta_1,\eta_2). \]

即原式不成立。

(2)参见这篇文章


第五题

五、设平稳序列\(\{X_t\}\)是零均值\({\rm ARMA}(1,1)\)过程:

\[X_t-aX_{t-1}=\varepsilon_t+b\varepsilon_{t-1},\quad 0<b<1,\{\varepsilon_t\}\sim {\rm WN}(0,1). \]

\(\{X_t\}\)的自协方差函数满足

\[\gamma_k=\frac{72}{25}\times\left(\frac{1}{2} \right)^{|k|},\quad k\ne 0,k\in\mathbb{Z}. \]

  1. 求常数\(a,b\)以及\(\gamma_0\)

  2. 作变换

    \[Y_1=X_1,\\ Y_t=X_t-aX_{t-1},\quad t\ge 2, \]

    \(\hat X_{n+1}=L(X_{n+1}|X_n,\cdots,X_1)\)\(\hat Y_{n+1}=L(Y_{n+1}|Y_n,\cdots,Y_1)\),验证:当\(n=1,2\)时,

    \[X_{n+1}-\hat X_{n+1}=Y_{n+1}-\hat Y_{n+1}. \]

  3. \(\{Y_t\}\)的一步预报为\(\hat Y_1=0\)\(\hat Y_{n+1}=\theta_{n,1}(Y_n-\hat Y_n)\)\(n\ge 1\),求常数\(\theta_{1,1},\theta_{2,1}\)

  4. 试导出\(\hat X_1,\hat X_2,\hat X_3\)的递推预报公式。

解:(1)

由于\(k>1\)时,

\[\gamma_k-a\gamma_{k-1}=\frac{72}{25}\cdot\left(\frac{1}{2^k}-\frac{a}{2^{k-1}} \right)=0, \]

所以\(a=\frac{1}{2}\)。又因为

\[\gamma_0=a^2\gamma_0+1+b^2+2ab\Rightarrow \frac{3}{4}\gamma_0=1+b+b^2,\\ \gamma_1=a\gamma_0+b\Rightarrow \frac{36}{25}=\frac{1}{2}\gamma_0+b, \]

所以\(b=\frac{2}{5}\)\(\gamma_0=\frac{52}{25}\)

(2)当\(n=1\)时,\(Y_2=X_2-aX_1\)

\[\hat Y_2=L(Y_2|Y_1)=L(X_2-aX_1|X_1)=\hat X_2-aX_1,\\ Y_2-\hat Y_2=X_2-aX_1-(\hat X_2-aX_1)=X_2-\hat X_2. \]

\(n=2\)时,由于\(Y_1=X_1\)\(Y_2=X_2-aX_1\in\text{sp}(X_1,X_2)\)

\[X_2=Y_2+aY_1\in\text{sp}(Y_1,Y_2), \]

所以\(\text{sp}(X_1,X_2)=\text{sp}(Y_1,Y_2)\),从而

\[\hat Y_3=L(Y_3|X_1,X_2)=L(X_3-aX_2|X_1,X_2)=\hat X_3-aX_2,\\ Y_3-\hat Y_3=X_3-aX_2-(\hat X_3-aX_2)=X_3-\hat X_3. \]

(3)记\(W_n=Y_n-\hat Y_n\),则

\[\nu_0=\mathbb{E}(W_1^2)=\mathbb{E}(X_1^2)=\gamma_0. \\ \hat Y_2=\theta_{1,1}W_1=\theta_{1,1}Y_1,\\ \mathbb{E}(\hat Y_2Y_1)=\theta_{1,1}\mathbb{E}(W_1^2)=\theta_{1,1}\gamma_0, \]

同时

\[\mathbb{E}(\hat Y_2Y_1)=\mathbb{E}[(Y_2-W_2)W_1]=\mathbb{E}(Y_2Y_1)=\gamma_1-a\gamma_0, \]

所以

\[\theta_{1,1}=\frac{\gamma_1-a\gamma_0}{\gamma_0}=\frac{b}{\gamma_0}=\frac{5}{26},\\ \nu_1=\mathbb{D}(Y_2)-\theta^2_{1,1}\mathbb{D}(W_1^2)=\frac{29}{25}-\frac{5^2}{26^2}\frac{52}{25}=\frac{29}{25}-\frac{1}{13}=\frac{352}{325}. \]

\(n=2\),有\(\hat Y_3=\theta_{2,1}W_2+\theta_{2,2}W_1\),所以

\[\mathbb{E}(\hat Y_3W_1)=\theta_{2,2}\nu_0=\mathbb{E}[Y_3Y_1]=\gamma_2-a\gamma_1, \\ \theta_{2,2}=\frac{\gamma_2-a\gamma_1}{\gamma_0}=0 \\ \mathbb{E}(\hat Y_3W_2)=\theta_{2,1}\nu_1=\mathbb{E}[Y_3(Y_2-\hat Y_2)]=\mathbb{E}(Y_2Y_3)=\frac{2}{5},\\ \theta_{2,1}=\frac{\mathbb{E}(Y_2Y_3)}{\nu_1}=\frac{2/5}{352/325}=\frac{65}{176}. \]

(4)显然\(\hat X_1=0\)\(X_1-\hat X_1=Y_1-\hat Y_1=W_1\)。而

\[\hat Y_2=\theta_{1,1}W_1,\\ \hat X_2=X_2-(Y_2-\hat Y_2)=X_2-(X_2-aX_1-\hat Y_2)=aX_1+\theta_{1,1}W_1,\\ \hat Y_3=\theta_{2,1}W_2,\\ \hat X_3=X_3-(Y_3-\hat Y_3)=X_3-(X_3-aX_2-\hat Y_3)=aX_2+\theta_{2,1}W_2. \]

posted @ 2021-01-24 17:05  江景景景页  阅读(1271)  评论(0编辑  收藏  举报