2018.03.28 python-pandas groupby使用

groupby 分组统计

1.根据某些条件将数据分组

2.对每个组独立应用函数

3.将结果合并到一个数据结构中

Dataframe在行或列上分组,将一个函数应用到各个分组并产生一个新值,然后函数执行结果被合并到最终的结果对象中

#分组
import numpy as np
import pandas as pd
df = pd.DataFrame({'A':['foo','bar','foo','bar','foo','bar','foo','foo'], 'B':['one','one','two','three','two','two','one','three'], 'C':np.random.randn(8), 'D':np.random.randn(8)}) print(df) print('------') print(df.groupby('A'),type(df.groupby('A'))) #直接分组得到的是groupby对象,是一个中间数据,没有进行计算 print(df.groupby('A').sum())#自动过滤字符串列 print(df.groupby('A').mean())#平均值 b = df.groupby(['A','B']).mean() print(b,type(b),'\n',b.columns) c = df.groupby(['A'])['D'].mean()#以A分组,取D列平均值 print(c,type(c),'\n')

结果:
     A      B         C         D
0  foo    one  0.429615 -0.708782
1  bar    one  0.891751  1.140575
2  foo    two -0.261858 -0.516835
3  bar  three  1.310361  0.269657
4  foo    two  1.048076  1.374218
5  bar    two -0.410148  1.061132
6  foo    one -1.124137 -0.729367
7  foo  three  0.289513  0.892714
------
<pandas.core.groupby.DataFrameGroupBy object at 0x000000000FBACA58> <class 'pandas.core.groupby.DataFrameGroupBy'>
            C         D
A                     
bar  1.791963  2.471364
foo  0.381208  0.311947
            C         D
A                     
bar  0.597321  0.823788
foo  0.076242  0.062389
                  C         D
A   B                       
bar one    0.891751  1.140575
    three  1.310361  0.269657
    two   -0.410148  1.061132
foo one   -0.347261 -0.719074
    three  0.289513  0.892714
    two    0.393109  0.428691 <class 'pandas.core.frame.DataFrame'>
Index(['C', 'D'], dtype='object')
A
bar    0.823788
foo    0.062389
Name: D, dtype: float64 <class 'pandas.core.series.Series'>

#分组 - 可迭代的对象
df = pd.DataFrame({'X':['A','B','A','B'],'Y':[1,3,4,2]})
print(df)
print(df.groupby('X'),type(df.groupby('X')))
print('-------')
print(list(df.groupby('X')),'->可迭代对象,直接生成list\n')
print(list(df.groupby('X'))[0],'->以元组的形式显示')
for n,g in df.groupby('X'):
    print(n)
    print(g)
    print('###')
print('--------')
#n是组名,g是分组后的DataFrame
print(df.groupby(['X']).get_group('A'),'\n')
print(df.groupby(['X']).get_group('B'),'\n')
#.get_group提取分组后的组

grouped = df.groupby(['X'])
print(grouped.groups)
print(grouped.groups['A'])#也可写 df.groupby('X').groups['A']
print('-------')
#.groups:将分组后的groups转化为dict
#可以字典索引方法来查看groups里的元素

sz = grouped.size()
print(sz,type(sz))
#.size() 查看分组后的长度
print('---------')
df = pd.DataFrame({'A':['foo','bar','foo','bar','foo','bar','foo','foo'],
                   'B':['one','one','two','three','two','two','one','three'],
                   'C':np.random.randn(8),
                   'D':np.random.randn(8)})
grouped = df.groupby(['A','B']).groups
print(df)
print(grouped)
print(grouped['foo','three'])

dic=dict({'A':[1,2,3],
       'B':[2,3,4]})
print(dic,type(dic))

结果:
   X  Y
0  A  1
1  B  3
2  A  4
3  B  2
<pandas.core.groupby.DataFrameGroupBy object at 0x000000000F889F60> <class 'pandas.core.groupby.DataFrameGroupBy'>
-------
[('A',    X  Y
0  A  1
2  A  4), ('B',    X  Y
1  B  3
3  B  2)] ->可迭代对象,直接生成list

('A',    X  Y
0  A  1
2  A  4) ->以元组的形式显示
A
   X  Y
0  A  1
2  A  4
###
B
   X  Y
1  B  3
3  B  2
###
--------
   X  Y
0  A  1
2  A  4

   X  Y
1  B  3
3  B  2

{'A': Int64Index([0, 2], dtype='int64'), 'B': Int64Index([1, 3], dtype='int64')}
Int64Index([0, 2], dtype='int64')
-------
X
A    2
B    2
dtype: int64 <class 'pandas.core.series.Series'>
---------
     A      B         C         D
0  foo    one -0.881923 -0.825102
1  bar    one -0.626412 -0.618638
2  foo    two -1.741248  1.557698
3  bar  three  1.076928  1.738265
4  foo    two -0.954103 -0.741415
5  bar    two  1.224841 -0.479472
6  foo    one  0.680046 -0.476137
7  foo  three -1.519952 -0.421738
{('bar', 'one'): Int64Index([1], dtype='int64'), ('bar', 'three'): Int64Index([3], dtype='int64'), ('bar', 'two'): Int64Index([5], dtype='int64'), ('foo', 'one'): Int64Index([0, 6], dtype='int64'), ('foo', 'three'): Int64Index([7], dtype='int64'), ('foo', 'two'): Int64Index([2, 4], dtype='int64')}
Int64Index([7], dtype='int64')
{'A': [1, 2, 3], 'B': [2, 3, 4]} <class 'dict'>

#其他轴上分组
df = pd.DataFrame({'data1':np.random.randn(2),
                   'data2':np.random.randn(2),
                   'key1':['a','b'],
                   'key2':['one','two']})
print(df)
print(df.dtypes)
print('--------')
for n,p in df.groupby(df.dtypes,axis=1):
    print(n)
    print(p)
    print('##')
#按照值类型分组,分为2组

结果:
      data1     data2 key1 key2
0  0.813374  0.232957    a  one
1 -0.213256  1.393156    b  two
data1    float64
data2    float64
key1      object
key2      object
dtype: object
--------
float64
      data1     data2
0  0.813374  0.232957
1 -0.213256  1.393156
##
object
  key1 key2
0    a  one
1    b  two
##

#通过字典或者Series分组
df = pd.DataFrame(np.arange(16).reshape(4,4),
                 columns = ['a','b','c','d'])
print(df)
print('-------')

mapping = {'a':'one','b':'one','c':'two','d':'two','e':'three'}
print(mapping)
by_column = df.groupby(mapping,axis = 1)
print(by_column.sum())
print('---------')
#mapping中 a,b列对应为one,c,d列对应为two,以字典为分组

s=pd.Series(mapping)
print(s)
print(s.groupby(s).count())
#s中,index = a,b对应的是one;c,d对应的是two,以Series来分组

结果:
    a   b   c   d
0   0   1   2   3
1   4   5   6   7
2   8   9  10  11
3  12  13  14  15
-------
{'a': 'one', 'b': 'one', 'c': 'two', 'd': 'two', 'e': 'three'}
   one  two
0    1    5
1    9   13
2   17   21
3   25   29
---------
a      one
b      one
c      two
d      two
e    three
dtype: object
one      2
three    1
two      2
dtype: int64

 

posted @ 2018-03-29 09:51  TAB_Zhu  阅读(5990)  评论(0编辑  收藏  举报