kafka "HelloWorld"实践

  前面我们分别介绍了kafka的相关基本原理,kafka的集群服务器搭建以及kafka相关的配置,本文综合前面的理论知识,运用kafka Java API实现一个简单的客户端Demo。

开发环境

  • 操作系统:MacOS 10.12.3
  • 开发平台:Eclipse Neon.2 Release (4.6.2)
  • JDK: java version 1.8.0_121
  • zookeeper: zookeeper-3.4.9
  • kafka: kafka-2.10-0.10.2.0

项目的建立与实现

  首先为大家展示一下项目最终的结构图,如下:

  下面开始建立项目:

  • 首先建立一个基本的Maven Java Project 项目框架,项目名称为 kafkaDemo,建立项目流程参考:maven 基本框架搭建
  • 然后修改pom.xml文件内容,为项目引入kafka 客户端jar包:
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka-clients</artifactId>
        <version>0.10.2.0</version>
    </dependency>

  添加完成后保存pom.xml,然后maven update project。当update完成后,maven依赖包里的jar包应该如上图所示。

  下面分别添加producer和consumer客户端代码。

  在src/main/java目录下新建package,命名为 com.unionpay.producer。由于kafka producer端有同步发送和异步发送之分,本项目将两个示例都进行展示,首先编写同步发送ProducerSync代码。

  ProducerSync.java:

 1 package com.unionpay.producer;
 2 
 3 import java.util.Properties;
 4 
 5 import org.apache.kafka.clients.producer.KafkaProducer;
 6 import org.apache.kafka.clients.producer.Producer;
 7 import org.apache.kafka.clients.producer.ProducerRecord;
 8 
 9 
10 public class ProducerSync {
11 
12     private static final String TOPIC = "my-replicated-topic";
13     public static void main(String[] args) {
14         // TODO Auto-generated method stub
15 
16         Properties properties = new Properties();
17         //客户端用于建立与kafka集群连接的host:port组,如果有多个broker,则用“,”隔开
18 //        "host1:port1,host2:port2,host3,post3"
19         properties.put("bootstrap.servers", "127.0.0.1:9092");
20 
21 //        producer在向servers发送信息后,是否需要serveres向客户端(producer)反馈接受消息状态用此参数配置
22 //        acks=0:表示producer不需要等待集群服务器发送的确认消息;acks=1:表示producer需要等到topic对应的leader发送的消息确认;
23 //        acks=all:表示producer需要等到leader以及所有followers的消息确认,这是最安全的消息保障机制
24         properties.put("acks", "all");
25         properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
26         properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
27         properties.put("buffer.memory", "33554432");
28         
29         Producer<String,String> producer = new KafkaProducer<String,String>(properties);
30         
31         for(int i=0;i<100;i++){
32             
33             String message = "Sync : this is the " + i + "th message for test!";
34             ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC, message);
35             producer.send(producerRecord);
36             
37             try {
38                 Thread.sleep(1000);
39             } catch (InterruptedException e) {
40                 // TODO Auto-generated catch block
41                 e.printStackTrace();
42             }
43         }
44         
45         producer.close();
46         
47     }
48 
49 }

  然后编写异步ProducerAsync代码。

  ProducerAsync.java:

 1 package com.unionpay.producer;
 2 
 3 import java.util.Properties;
 4 
 5 import org.apache.kafka.clients.producer.KafkaProducer;
 6 import org.apache.kafka.clients.producer.Producer;
 7 import org.apache.kafka.clients.producer.ProducerRecord;
 8 
 9 public class ProducerAsync {
10 
11     private static final String TOPIC = "my-replicated-topic";
12     public static void main(String[] args) {
13         // TODO Auto-generated method stub
14         
15         Properties  props = new Properties();
16         props.put("bootstrap.servers", "127.0.0.1:9092");
17         props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
18         props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
19         props.put("producer.type", "async");
20         props.put("batch.size", "16384");
21         
22         Producer<String,String> producer = new KafkaProducer<String,String>(props);
23         
24         for(int i=0;i<100;i++){
25             
26             String message = "Async : this is the " + i + "th message for test!";
27             
28             ProducerRecord producerRecord = new ProducerRecord(TOPIC, message);
29             producer.send(producerRecord);
30             
31             try {
32                 Thread.sleep(1000);
33             } catch (InterruptedException e) {
34                 // TODO Auto-generated catch block
35                 e.printStackTrace();
36             }
37         }
38         
39         producer.close();
40     }
41 }

  从两个代码文件比对来看,异步中多了一句配置语句props.put("producer.type", "async");

  然后编写consumer端代码

  GroupConsumer.java:

 1 package com.unionpay.consumer;
 2 
 3 import java.util.Arrays;
 4 import java.util.Properties;
 5 
 6 import org.apache.kafka.clients.consumer.ConsumerRecord;
 7 import org.apache.kafka.clients.consumer.ConsumerRecords;
 8 import org.apache.kafka.clients.consumer.KafkaConsumer;
 9 
10 public class GroupConsumer {
11     
12     private static final String BROKER = "127.0.0.1:9092";
13     private static final String TOPIC = "my-replicated-topic";
14     
15 
16     public static void main(String[] args) {
17         // TODO Auto-generated method stub
18 
19         Properties props = new Properties();
20         props.put("bootstrap.servers",BROKER);
21 //        用来唯一标识consumer进程所在组的字符串,如果设置同样的group id,表示这些processes都是属于同一个consumer group
22         props.put("group.id", "group1");
23 //        如果为真,consumer所fetch的消息的offset将会自动的同步到zookeeper。这项提交的offset将在进程挂掉时,由新的consumer使用
24         props.put("enable.auto.commit", "true");
25 //        consumer向zookeeper提交offset的频率
26         props.put("auto.commit.interval.ms", "1000");
27         props.put("session.timeout.ms", "30000");
28         props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
29         props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
30         
31         KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);
32         
33 //        订阅topic,可以为多个用,隔开Arrays.asList("topic1","topic2");
34         consumer.subscribe(Arrays.asList(TOPIC));
35         
36         while(true){
37             ConsumerRecords<String,String> consumerRecords = consumer.poll(100);
38             
39             for(ConsumerRecord<String,String> consumerRecord : consumerRecords){
40                 System.out.println(consumerRecord.value());
41             }
42         }
43     }
44 }

  到目前为止,我们的项目建立完成啦,下面启动zookeeper集群服务器,启动kafka集群服务器:

//启动zookeeper集群服务器
cd ~/DevelopEnvironment/zookeeper-3.4.9-kafka/bin
./zkServer.sh start

//启动kafka集群服务器
cd ~/DevelopEnvironment/kafka_2.10-0.10.2.0/bin
./kafka-server-start.sh ../config/server.properties 
./kafka-server-start.sh ../config/server-1.properties 
./kafka-server-start.sh ../config/server-2.properties 

   当zookeeper集群服务器和kafka集群服务器启动成功后,然后分别运行GroupConsumer.java和ProducerAsync.java,客户端获取如下信息:

  然后运行ProducerSync.java,客户端获取如下信息:

  到此,游戏结束,我们的kafka API 使用demo介绍到此结束。

 

  

 

 

posted on 2017-03-21 12:48  jxwch  阅读(2277)  评论(0编辑  收藏  举报

导航