TCP/IP 协议简单分析(建立连接握手过程)

原文:http://hi.baidu.com/wuguoyana/blog/item/38c04d3bcf047ce43a87ce55.html

首先TCPIP是两种不同的协议,它们来七层网络模型中分别在不同的层次,IP协议是网络层的协议,TCP是更高一层的传输层的协议,TCP是建立在IP协议之上的,所以一般把TCPIP连在一起说TCP/IP协议。

Windows系统的TCP协议栈的数据包默认是1460字节大小,如果一次传输的数据大于这个长度,会把分割成几个长度都不大于1460字节的TCP数据包,每个数据包都会被赋予一个sequnce number(相当于每个数据包的顺序号,凭这个接收端可以知道数据包的前后顺序)

之后TCP的数据包再被包裹上一层IP的数据的头,形成IP数据包在网上传输(其实最后还要包一层以太网数据包,网络上最终传输的都是以太网数据包)。

IP数据包到了目的地后,接收端首先把IP数据包的包头去掉,取出TCP的包。接收端每收到一个TCP的数据包都需要返回给发送端一个ACK的数据包告诉发送端已接到此数据包,如果接收端在一定的时间内没有收到某个数据包的ACK响应,会再次发送这个数据包,这样就保证了数据都能被接收端接收到(因特网上丢数据包是很正常的事,如果没有数据包重发机制,很难保证发送的数据都能被接收端完整的收到)。

每个TCP数据包也是由包头和实际数据组成,包头包含如下主要内容:

l        Source port2字节)

发送端的端口号

l        Destination port2字节)

接收端的端口号

TCP包头中只包含双方的端口号,双方的IP地址在IP包的包头,所以在TCP数据包的包头中没有IP地址。

l        Sequence number4字节)

数据的顺序号,表示当前数据包中的数据起始顺序号,比如前一个数据包的SEQ为十六进制的:df d5 aa 3d,数据包的实际数据长度为16字节,那么下一个数据包的SEQ就要在前一个数据包的SEQ基础上加上16,为:df d5 aa 4d

l        Acknowledgement number4字节)

接收到对方的某个数据包后的回应顺序号。如果接收到了对方主动发送来的某个数据包,必须要返回对方一个ACK回应数据包,数据包的头部的Acknowledgement number部分根据对方发送数据的SEQ和实际数据长度,返回SEQ +实际数据长度,表示已经接收到这个数据包。对方收到这个回应,根据数值计算后知道这个数据包已经被对方接收。如果接收不到ACK的回应,就意味着这个数据包已经在网上被丢失,需要重新发送此数据包。

l        Header length1字节)

表示TCP数据包的包头长度,整个TCP数据包的长度减包头长度就能得到TCP数据包的实际传送的数据长度。

l        Flags1字节)

标志字节,每一位都是一个标志,以下是几个主要标志:

ACK表示数据包是个ACK回应数据包,表示接收到了对方的某个数据包,具体哪个包由包头的Acknowledgement number部分指示。

PSH表示这是个有实际数据的包。

SYN表示这是个建立连接的数据包,通讯双方要通讯,总是由客户端先发送SYN数据包到服务端以建立TCP的连接。

FIN表示通讯结束,拆除连接的数据包

下面描述一次TCP传送数据的完整过程,以一个客户端向服务端发送一些数据为例。

 

Figure 1.一次完整的TCP通讯的过程

1、建立连接

TCP是面向连接的协议,客户端和服务端要通讯就必须先建立一个连接。首先通讯双方都有地址,就是IP地址加端口号(IP:Port)标识通讯的每一端,客户端的IP:Port跟服务器IP:Port之间就构成一个socket套接字。所谓建立连接就是在客户端的IP:Port跟服务器IP:Port之间建立一个通道,初始化一些通讯的基础设置,以便以后的数据通讯的正常进行。

1.1.   客户端发送SYN

总是客户端发起连接,首先客户端发送SYN数据包到服务端以建立TCP连接。

SYN数据包只有TCP包头,没有实际数据。

Flags标志字节的SYN位置位,表示是SYN数据包。

Sequence number由客户端随机生成一个4字节的数据,作为本次连接通讯客户端数据的起始顺序号,以后客户端发往服务端的数据包的Sequence number都在此基础上加上每次传送的实际数据长度依次相加递增,这样根据每个数据包的Sequence number就能判断出数据包的前后顺序,以便接收方根据数据包的顺序拼接数据包。

1.2.   服务端回应ACKSYN

服务端收到客户端的SYN后,首先要发送一个ACK数据包给客户端表示收到了这个数据包。

数据包的Flags标志字节的ACK置位,表示是ACK回应数据包。

Acknowledgement number设置为接收到的数据包的SEQ +数据包实际长度,因为接收到的SYN的实际数据长度为0但是TCP协议认为实际长度为0的主动发送的数据长度为1SYN是客户端主动发送的数据包,所以服务端把Acknowledgement number设置为接收到的数据包的SEQ + 1

TCP通讯可以是双向的,一旦建立了连接,服务端也可以向客户端发送数据。

所以服务端也会向客户端发送一个SYN包,数据包的Flags标志字节的SYN置位,表示是SYN数据包,同时随机生成一个4字节的数据,作为本次连接通讯服务端数据的起始顺序号Sequence number

实际中,服务端把这两个数据包合并为一个数据包,SYNACK都是置位,Sequence numberAcknowledgement number也同时设置,作为一个数据包发送回客户端。

1.3.   客户端回应ACK

客户端收到服务端的SYN数据包后,需要回应一个ACK数据包,表示接收到此数据包。同样ACK数据包的Acknowledgement number设置为接收到的数据包的SEQ + 1SYNACK数据包的实际数据长度也是0)。

2、相互收发数据

通讯双方建立了连接后,就可以相互进行数据包的传送。

发送数据的一端,把数据包的Flags标准字节的PSH置位,表示是有实际数据的数据包。

Sequence number置为前一次的数据包的Sequence number加上前一次数据包的长度。

如果数据包还兼做ACK包,则把ACK置位,同时设置好Acknowledgement number把数据包发送到对方。

接收方收到对方主动发送的数据数据包后,一定要回复ACK数据包,如果同时有数据发往对方,可以把实际数据包跟ACK数据包合在一起发送。

在拆除连接之前,通讯双方可以一直相互发送接收数据,数据的顺序都建立在各自的Sequence number基础上。

1中,蓝色部分的数据通讯就表示这一阶段。

3、拆除连接

双方数据交换完毕,需要拆除连接,结束通讯。

3.1.   客户端发送FIN

通讯的一方向另一方发送FIN数据包表示要结束通讯,拆除连接。

客户端把数据包的Flags标准字节的FIN置位,表示是通讯结束数据包。

3.2.   服务端返回ACKFIN

服务端收到客户端的FIN数据包后,先回应一个ACK数据包,然后也发送一个FIN数据包,还是服务端也结束通讯。

3.3.   客户端回应ACK

客户端回应ACK表示接收到服务端的FIN数据,双方通讯结束。

-----------------------------------------------------------------------------------
 
以下结合实图解释下(个人理解,不正之处望改正):
使用Wireshark在windows下抓包,可以看到三次握手、Client发送24Byte的请求数据、Server发送240Byte的响应数据、四次挥手的过程!(在linux下用Wireshark抓包效果类似)
Client IP: 192.168.100.2
Server IP: 192.168.100.55
一: 三次握手:
1.1 Client 发送一个SYN数据包给Server,这个数据包的序列号(Seq)为0,窗口大小(Win)为65535,数据长度(Len)为0,最大分段大小(MSS)为1460。后面的不知道啥意思了。
1.2 Server 收到SYN数据包后要给Client答复,发送一个SYN+ACK数据包,这个数据包的序列号(Seq)为0,确认号(ACK)为1,即ACK=收到包的Seq+1,窗口大小(Win)为8704,数据长度(Len)为0。
1.3 Client收到SYN+ACK数据包后也要给Server答复,发送一个ACK数据包,这个数据包的序列号(Seq)为1,确认号(ACK)为1,即ACK=收到包的Seq+1,窗口大小(Win)为65535,数据长度(Len)为0。
二: 发送24Byte的请求数据:
2.1 Client向Server发送一个PSH标志置位的请求数据包,这个数据包与1.3的数据包差不多,唯一不同是数据长度(Len)为24。(为什么与1.3数据包差不多呢?)
2.2 Server收到Client发送过来请求数据包后要给Client答复,发送一个ACK数据包,这个数据包的序列号(Seq)为1,确认号(ACK)为25,即ACK=收到包的Seq+24,窗口大小(Win)为8680,数据长度(Len)为0。
2.3 Server向Client发送一个PSH标志置位的响应数据包,这个数据包与2.2的数据包差不多,唯一不同的是数据长度(Len)为240.(为什么和2.2数据包差不多呢?)
三: 接收240Byte的响应数据:
2.4 Client收到Server发送过来的响应数据包后要给Server答复,发送一个ACK数据包,这个数据包的序列号(Seq)为25,确认号(ACK)为241,即ACK=收到包的Seq+240,窗口大小(win)为65295,数据长度(Len)为0.
四: 四次挥手:
3.1 Client向Server发送一个FIN数据包表示断开连接,这个数据包与2.4的数据包差不多,唯一不同的是数据包FIN标志位置位。(为什么和2.4数据包差不多呢?)
3.2  Server收到Client的FIN数据包后要给Client答复,发送一个ACK数据包,这个数据包序列号(Seq)为241,确认号(ACK)为26,即ACK=收到包的Seq+1,窗口大小(win)为8704, 数据长度(Len)为0.
3.3  Server紧接着发送一个FIN数据包给Client,表示服务器也结束通讯。这个数据包与3.2数据包差不多,唯一不同的是数据包FIN标志位置位。(为什么和3.2数据包差不多呢?)
3.4   Client收到Server发送过来的FIN数据包后要给Client答复,发送一个ACK数据包,这个数据包序列号(Seq)为26,确认号(ACK)为242,即ACK=收到包的Seq+1,窗口大小(Win)为8704,数据长度(Len)为0.
至此,三次握手、Client发送24Byte的请求数据、Server发送240Byte的响应数据、四次挥手的过程结束!
 
补充:
上述的解释出现好几次“为什么和**数据包差不多呢?”,比如2.1的数据包和1.3的数据包差不多呢。
其实两个数据包可以合并为一个数包发送,我理解为重复显示。
 
 
 
 
 
 
/*******************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************/
 
 
TCP/IP(Transmission Control Protocol/Internet Protocol)的简写,中文译名为传输控制协议/互联网络协议)协议是Internet最基本的协议。

TCP/IP整体构架概述

     TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通 信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网络层、传 输层、会话层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为:   应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。   传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。   互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。   网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。

TCP/IP中的协议

1. IP   网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。   IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更 高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数 据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。   高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一个有效的主机发送来的。IP确认包含一个选项,叫作IP source  routing,可以用来指定一条源地址和目的地址之间的直接路径。对于一些TCP和UDP的服务来说,使用了该选项的IP包好像是从路径上的最后一个系 统传递过来的,而不是来自于它的真实地点。这个选项是为了测试而存在的,说明了它可以被用来欺骗系统来进行平常是被禁止的连接。那么,许多依靠IP源地址 做确认的服务将产生问题并且会被非法入侵。   2. TCP   如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。   TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。   面向连接的服务(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收域名数据库),但使用UDP传送有关单个主机的信息。   3.UDP   UDP与TCP位于同一层,但它不管数据包的顺序、错误或重发。因此,UDP不被应用于那些使 用虚电路的面向连接的服务,UDP主要用于那些面向查询---应答的服务,例如NFS。相对于FTP或Telnet,这些服务需要交换的信息量较小。使用UDP的服务包括NTP(网络时间协议)和DNS(DNS也使用TCP)。   欺骗UDP包比欺骗TCP包更容易,因为UDP没有建立初始化连接(也可以称为握手)(因为在两个系统间没有虚电路),也就是说,与UDP相关的服务面临着更大的危险。   4.ICMP   ICMP与IP位于同一层,它被用来传送IP的的控制信息。它主要是用来提供有关通向目的地址 的路径信息。ICMP的‘Redirect’信息通知主机通向其他系统的更准确的路径,而‘Unreachable’信息则指出路径有问题。另外,如果路 径不可用了,ICMP可以使TCP连接‘体面地’终止。PING是最常用的基于ICMP的服务。   5. TCP和UDP的端口结构   TCP和UDP服务通常有一个客户/服务器的关系,例如,一个Telnet服务进程开始在系统 上处于空闲状态,等待着连接。用户使用Telnet客户程序与服务进程建立一个连接。客户程序向服务进程写入信息,服务进程读出信息并发出响应,客户程序 读出响应并向用户报告。因而,这个连接是双工的,可以用来进行读写。   两个系统间的多重Telnet连接是如何相互确认并协调一致呢?TCP或UDP连接唯一地使用每个信息中的如下四项进行确认:   源IP地址 发送包的IP地址。   目的IP地址 接收包的IP地址。   源端口 源系统上的连接的端口。   目的端口 目的系统上的连接的端口。   端口是一个软件结构,被客户程序或服务进程用来发送和接收信息。一个端口对应一个16比特的 数。服务进程通常使用一个固定的端口,例如,SMTP使用25、Xwindows使用6000。这些端口号是‘广为人知’的,因为在建立与特定的主机或服 务的连接时,需要这些地址和目的地址进行通讯。
posted @ 2012-12-03 20:17  萝卜先生  阅读(1787)  评论(0编辑  收藏  举报