https://blog.csdn.net/weixin_38314865/article/details/84190175

定义:
主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。PCA的思想是将n维特征映射到k维上(k<n),这k维是全新的正交特征。这k维特征称为主成分,是重新构造出来的k维特征,而不是简单地从n维特征中去除其余n-k维特征。
简单解释:

具体的,假如我们的数据集是n维的,共有m个数据。我们希望将这m个数据的维度从n维降到k维,希望这m个k维的数据集尽可能的代表原始数据集。我们知道数据从n维降到k维肯定会有损失,但是我们希望损失尽可能的小。那么如何让这k维的数据尽可能表示原来的数据呢?

我们先看看最简单的情况,也就是n=2,k=1,也就是将数据从二维降维到一维。数据如下图。我们希望找到某一个维度方向,它可以代表这两个维度的数据。图中列了两个向量方向,u1和u2,那么哪个向量可以更好的代表原始数据集呢?从直观上也可以看出,u1比u2好,因为数据在这个方向上投影后的样本点之间方差最大。

引用《线性代数的几何意义》的描述:“矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量。在这个变换的过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值。

经过数学上的推导的,我们就可以知道,特征值对应的特征向量就是理想中想取得正确的坐标轴,而特征值就等于数据在旋转之后的坐标上对应维度上的方差。

也就是说,直接求出矩阵A的特征向量得出对应的特征向量。我们就能找到旋转后正确的坐标轴。这个就是特征值和特征向量的一个实际应用:“得出使数据在各个维度区分度达到最大的坐标轴。”

所以,在数据挖掘中,就会直接用特征值来描述对应特征向量方向上包含的信息量,而某一特征值除以所有特征值的和的值就为:该特征向量的方差贡献率(方差贡献率代表了该维度下蕴含的信息量的比例)。

通常经过特征向量变换下的数据被称为变量的主成分,当前m个主成分累计的方差贡献率达到一个较高的百分数(如85%以上)的话,就保留着这m个主成分的数据。实现了对数据进行降维的目的。整个主成分分析的算法原理也就是这个。

posted on 2019-06-27 17:47  Fendi_ly  阅读(4533)  评论(0编辑  收藏  举报