算法导论笔记——第四章 分治策略

第四章 分治策略

  分解,解决,合并

  时间复杂度,求解递归式:代入法,递归树法,主方法

  忽略细节:是否为整数,边界条件

4.1 最大数组问题

股票最大收益问题(LC有类似题目,存在线性算法:如果当前和大于0,与下一个累加。如果小于0,舍弃,从下一个重现开始求和。)

  每日股票价格变为每日股票变化量,再计算最大子数组

  可采用分治法,将其分为相等子数组,然后分别求最大子数组位于左边,右边,或者跨越中点,取最大值即可

  T(n)=2T(n/2)+O(n)

4.2 代入法求解递归式

  猜测,再递归证明

4.3 递归树法求解递归式

  画出递归树

4.4 主方法求解递归式

  T(n)=aT(n/b)+f(n)  a>=1,b>1,f(n)为渐进正函数

  它表示将规模为n的问题分解为a个子问题,每个子问题规模为n/b。

  主定理:

 

  

posted on 2017-08-16 13:56  胖子一刚  阅读(268)  评论(0编辑  收藏  举报

导航