对象内置的方法/内置的 Symbol 值
内置的 Symbol 值
除了定义自己使用的 Symbol 值以外,ES6 还提供了 11 个内置的 Symbol 值,指向语言内部使用的方法。
Symbol.hasInstance
对象的Symbol.hasInstance
属性,指向一个内部方法。当其他对象使用instanceof
运算符,判断是否为该对象的实例时,会调用这个方法。比如,foo instanceof Foo
在语言内部,实际调用的是Foo[Symbol.hasInstance](foo)
。
class MyClass {
[Symbol.hasInstance](foo) {
return foo instanceof Array;
}
}
[1, 2, 3] instanceof new MyClass() // true
上面代码中,MyClass
是一个类,new MyClass()
会返回一个实例。该实例的Symbol.hasInstance
方法,会在进行instanceof
运算时自动调用,判断左侧的运算子是否为Array
的实例。
下面是另一个例子。
class Even {
static [Symbol.hasInstance](obj) {
return Number(obj) % 2 === 0;
}
}
// 等同于
const Even = {
[Symbol.hasInstance](obj) {
return Number(obj) % 2 === 0;
}
};
1 instanceof Even // false
2 instanceof Even // true
12345 instanceof Even // false
Symbol.isConcatSpreadable
对象的Symbol.isConcatSpreadable
属性等于一个布尔值,表示该对象用于Array.prototype.concat()
时,是否可以展开。
let arr1 = ['c', 'd'];
['a', 'b'].concat(arr1, 'e') // ['a', 'b', 'c', 'd', 'e']
arr1[Symbol.isConcatSpreadable] // undefined
let arr2 = ['c', 'd'];
arr2[Symbol.isConcatSpreadable] = false;
['a', 'b'].concat(arr2, 'e') // ['a', 'b', ['c','d'], 'e']
上面代码说明,数组的默认行为是可以展开,Symbol.isConcatSpreadable
默认等于undefined
。该属性等于true
时,也有展开的效果。
类似数组的对象正好相反,默认不展开。它的Symbol.isConcatSpreadable
属性设为true
,才可以展开。
let obj = {length: 2, 0: 'c', 1: 'd'};
['a', 'b'].concat(obj, 'e') // ['a', 'b', obj, 'e']
obj[Symbol.isConcatSpreadable] = true;
['a', 'b'].concat(obj, 'e') // ['a', 'b', 'c', 'd', 'e']
Symbol.isConcatSpreadable
属性也可以定义在类里面。
class A1 extends Array {
constructor(args) {
super(args);
this[Symbol.isConcatSpreadable] = true;
}
}
class A2 extends Array {
constructor(args) {
super(args);
}
get [Symbol.isConcatSpreadable] () {
return false;
}
}
let a1 = new A1();
a1[0] = 3;
a1[1] = 4;
let a2 = new A2();
a2[0] = 5;
a2[1] = 6;
[1, 2].concat(a1).concat(a2)
// [1, 2, 3, 4, [5, 6]]
上面代码中,类A1
是可展开的,类A2
是不可展开的,所以使用concat
时有不一样的结果。
注意,Symbol.isConcatSpreadable
的位置差异,A1
是定义在实例上,A2
是定义在类本身,效果相同。
Symbol.species
对象的Symbol.species
属性,指向一个构造函数。创建造衍生对象时,会使用该属性。
class MyArray extends Array {
}
const a = new MyArray();
a.map(x => x) instanceof MyArray // true
上面代码中,子类MyArray
继承了父类Array
。a.map(x => x)
会创建一个MyArray
的衍生对象,该衍生对象还是MyArray
的实例。
现在,MyArray
设置Symbol.species
属性。
class MyArray extends Array {
static get [Symbol.species]() { return Array; }
}
上面代码中,由于定义了Symbol.species
属性,创建衍生对象时就会使用这个属性返回的的函数,作为构造函数。这个例子也说明,定义Symbol.species
属性要采用get
读取器。默认的Symbol.species
属性等同于下面的写法。
static get [Symbol.species]() {
return this;
}
现在,再来看前面的例子。
class MyArray extends Array {
static get [Symbol.species]() { return Array; }
}
const a = new MyArray();
a.map(x => x) instanceof MyArray // false
a.map(x => x) instanceof Array // true
上面代码中,a.map(x => x)
创建的衍生对象,就不是MyArray
的实例,而直接就是Array
的实例。
再看一个例子。
class T1 extends Promise {
}
class T2 extends Promise {
static get [Symbol.species]() {
return Promise;
}
}
new T1(r => r()).then(v => v) instanceof T1 // true
new T2(r => r()).then(v => v) instanceof T2 // false
上面代码中,T2
定义了Symbol.species
属性,T1
没有。结果就导致了创建衍生对象时(then
方法),T1
调用的是自身的构造方法,而T2
调用的是Promise
的构造方法。
总之,Symbol.species
的作用在于,实例对象在运行过程中,需要再次调用自身的构造函数时,会调用该属性指定的构造函数。它主要的用途是,有些类库是在基类的基础上修改的,那么子类使用继承的方法时,作者可能希望返回基类的实例,而不是子类的实例。
Symbol.match
对象的Symbol.match
属性,指向一个函数。当执行str.match(myObject)
时,如果该属性存在,会调用它,返回该方法的返回值。
String.prototype.match(regexp)
// 等同于
regexp[Symbol.match](this)
class MyMatcher {
[Symbol.match](string) {
return 'hello world'.indexOf(string);
}
}
'e'.match(new MyMatcher()) // 1
Symbol.replace
对象的Symbol.replace
属性,指向一个方法,当该对象被String.prototype.replace
方法调用时,会返回该方法的返回值。
String.prototype.replace(searchValue, replaceValue)
// 等同于
searchValue[Symbol.replace](this, replaceValue)
下面是一个例子。
const x = {};
x[Symbol.replace] = (...s) => console.log(s);
'Hello'.replace(x, 'World') // ["Hello", "World"]
Symbol.replace
方法会收到两个参数,第一个参数是replace
方法正在作用的对象,上面例子是Hello
,第二个参数是替换后的值,上面例子是World
。
Symbol.search
对象的Symbol.search
属性,指向一个方法,当该对象被String.prototype.search
方法调用时,会返回该方法的返回值。
String.prototype.search(regexp)
// 等同于
regexp[Symbol.search](this)
class MySearch {
constructor(value) {
this.value = value;
}
[Symbol.search](string) {
return string.indexOf(this.value);
}
}
'foobar'.search(new MySearch('foo')) // 0
Symbol.split
对象的Symbol.split
属性,指向一个方法,当该对象被String.prototype.split
方法调用时,会返回该方法的返回值。
String.prototype.split(separator, limit)
// 等同于
separator[Symbol.split](this, limit)
下面是一个例子。
class MySplitter {
constructor(value) {
this.value = value;
}
[Symbol.split](string) {
let index = string.indexOf(this.value);
if (index === -1) {
return string;
}
return [
string.substr(0, index),
string.substr(index + this.value.length)
];
}
}
'foobar'.split(new MySplitter('foo'))
// ['', 'bar']
'foobar'.split(new MySplitter('bar'))
// ['foo', '']
'foobar'.split(new MySplitter('baz'))
// 'foobar'
上面方法使用Symbol.split
方法,重新定义了字符串对象的split
方法的行为,
Symbol.iterator
对象的Symbol.iterator
属性,指向该对象的默认遍历器方法。
const myIterable = {};
myIterable[Symbol.iterator] = function* () {
yield 1;
yield 2;
yield 3;
};
[...myIterable] // [1, 2, 3]
对象进行for...of
循环时,会调用Symbol.iterator
方法,返回该对象的默认遍历器,详细介绍参见《Iterator 和 for...of 循环》一章。
class Collection {
*[Symbol.iterator]() {
let i = 0;
while(this[i] !== undefined) {
yield this[i];
++i;
}
}
}
let myCollection = new Collection();
myCollection[0] = 1;
myCollection[1] = 2;
for(let value of myCollection) {
console.log(value);
}
// 1
// 2
Symbol.toPrimitive
对象的Symbol.toPrimitive
属性,指向一个方法。该对象被转为原始类型的值时,会调用这个方法,返回该对象对应的原始类型值。
Symbol.toPrimitive
被调用时,会接受一个字符串参数,表示当前运算的模式,一共有三种模式。
- Number:该场合需要转成数值
- String:该场合需要转成字符串
- Default:该场合可以转成数值,也可以转成字符串
let obj = {
[Symbol.toPrimitive](hint) {
switch (hint) {
case 'number':
return 123;
case 'string':
return 'str';
case 'default':
return 'default';
default:
throw new Error();
}
}
};
2 * obj // 246
3 + obj // '3default'
obj == 'default' // true
String(obj) // 'str'
Symbol.toStringTag
对象的Symbol.toStringTag
属性,指向一个方法。在该对象上面调用Object.prototype.toString
方法时,如果这个属性存在,它的返回值会出现在toString
方法返回的字符串之中,表示对象的类型。也就是说,这个属性可以用来定制[object Object]
或[object Array]
中object
后面的那个字符串。
// 例一
({[Symbol.toStringTag]: 'Foo'}.toString())
// "[object Foo]"
// 例二
class Collection {
get [Symbol.toStringTag]() {
return 'xxx';
}
}
let x = new Collection();
Object.prototype.toString.call(x) // "[object xxx]"
ES6 新增内置对象的Symbol.toStringTag
属性值如下。
JSON[Symbol.toStringTag]
:'JSON'Math[Symbol.toStringTag]
:'Math'- Module 对象
M[Symbol.toStringTag]
:'Module' ArrayBuffer.prototype[Symbol.toStringTag]
:'ArrayBuffer'DataView.prototype[Symbol.toStringTag]
:'DataView'Map.prototype[Symbol.toStringTag]
:'Map'Promise.prototype[Symbol.toStringTag]
:'Promise'Set.prototype[Symbol.toStringTag]
:'Set'%TypedArray%.prototype[Symbol.toStringTag]
:'Uint8Array'等WeakMap.prototype[Symbol.toStringTag]
:'WeakMap'WeakSet.prototype[Symbol.toStringTag]
:'WeakSet'%MapIteratorPrototype%[Symbol.toStringTag]
:'Map Iterator'%SetIteratorPrototype%[Symbol.toStringTag]
:'Set Iterator'%StringIteratorPrototype%[Symbol.toStringTag]
:'String Iterator'Symbol.prototype[Symbol.toStringTag]
:'Symbol'Generator.prototype[Symbol.toStringTag]
:'Generator'GeneratorFunction.prototype[Symbol.toStringTag]
:'GeneratorFunction'
Symbol.unscopables
对象的Symbol.unscopables
属性,指向一个对象。该对象指定了使用with
关键字时,哪些属性会被with
环境排除。
Array.prototype[Symbol.unscopables]
// {
// copyWithin: true,
// entries: true,
// fill: true,
// find: true,
// findIndex: true,
// includes: true,
// keys: true
// }
Object.keys(Array.prototype[Symbol.unscopables])
// ['copyWithin', 'entries', 'fill', 'find', 'findIndex', 'includes', 'keys']
上面代码说明,数组有 7 个属性,会被with
命令排除。
// 没有 unscopables 时
class MyClass {
foo() { return 1; }
}
var foo = function () { return 2; };
with (MyClass.prototype) {
foo(); // 1
}
// 有 unscopables 时
class MyClass {
foo() { return 1; }
get [Symbol.unscopables]() {
return { foo: true };
}
}
var foo = function () { return 2; };
with (MyClass.prototype) {
foo(); // 2
}
上面代码通过指定Symbol.unscopables
属性,使得with
语法块不会在当前作用域寻找foo
属性,即foo
将指向外层作用域的变量。