Javascript图像处理——图像金字塔
2013-01-15 08:43 Justany_WhiteSnow 阅读(5864) 评论(14) 编辑 收藏 举报前言
上一篇文章,我们讲解了边缘梯度计算函数,这篇文章我们来了解图像金字塔。
图像金字塔?
图像金字塔被广泛用于计算机视觉应用中。
图像金字塔是一个图像集合,集合中所有的图像都源于同一个原始图像,而且是通过对原始图像连续降采样获得的。
——《学习OpenCV》
常见的图像金字塔有下面两种:
- 高斯金字塔(Gaussian pyramid): 用来向下采样
- 拉普拉斯金字塔(Laplacian pyramid): 用来从金字塔低层图像重建上层未采样图像
高斯金字塔
类似金字塔一样,高斯金字塔从底层原始图逐渐向下采样,越来越小。
那么如何获取下一层图像呢?
首先,和高斯内核卷积:
然后,将所有偶数行列删掉。
可见,这样下一级图像约为上一级的1/4。
那么向上变换如何变换呢?
首先先将图片行列扩大为原来的两倍,然后将添加的行列用0填充。
最后用刚刚的高斯内核乘以4后卷积。
高斯金字塔实现
var pyrDown = function(__src, __dst){ __src || error(arguments.callee, IS_UNDEFINED_OR_NULL/* {line} */); if(__src.type && __src.type == "CV_RGBA"){ var width = __src.col, height = __src.row, dWidth = ((width & 1) + width) / 2, dHeight = ((height & 1) + height) / 2, sData = __src.data, dst = __dst || new Mat(dHeight, dWidth, CV_RGBA), dstData = dst.data; var withBorderMat = copyMakeBorder(__src, 2, 2, 0, 0), mData = withBorderMat.data, mWidth = withBorderMat.col; var newValue, nowX, offsetY, offsetI, dOffsetI, i, j; var kernel = [1, 4, 6, 4, 1, 4, 16, 24, 16, 4, 6, 24, 36, 24, 6, 4, 16, 24, 16, 4, 1, 4, 6, 4, 1 ]; for(i = dHeight; i--;){ dOffsetI = i * dWidth; for(j = dWidth; j--;){ for(c = 3; c--;){ newValue = 0; for(y = 5; y--;){ offsetY = (y + i * 2) * mWidth * 4; for(x = 5; x--;){ nowX = (x + j * 2) * 4 + c; newValue += (mData[offsetY + nowX] * kernel[y * 5 + x]); } } dstData[(j + dOffsetI) * 4 + c] = newValue / 256; } dstData[(j + dOffsetI) * 4 + 3] = mData[offsetY + 2 * mWidth * 4 + (j * 2 + 2) * 4 + 3]; } } }else{ error(arguments.callee, UNSPPORT_DATA_TYPE/* {line} */); } return dst; };
dWidth = ((width & 1) + width) / 2,
dHeight = ((height & 1) + height) / 2
这里面a & 1等同于a % 2,即求除以2的余数。
我们实现时候没有按照上面的步骤,因为这样子效率就低了,而是直接创建一个原矩阵1/4的矩阵,然后卷积时候跳过那些要被删掉的行和列。
下面也一样,创建后卷积,由于一些地方一定是0,所以实际卷积过程中,内核有些元素是被忽略的。
var pyrUp = function(__src, __dst){ __src || error(arguments.callee, IS_UNDEFINED_OR_NULL/* {line} */); if(__src.type && __src.type == "CV_RGBA"){ var width = __src.col, height = __src.row, dWidth = width * 2, dHeight = height * 2, sData = __src.data, dst = __dst || new Mat(dHeight, dWidth, CV_RGBA), dstData = dst.data; var withBorderMat = copyMakeBorder(__src, 2, 2, 0, 0), mData = withBorderMat.data, mWidth = withBorderMat.col; var newValue, nowX, offsetY, offsetI, dOffsetI, i, j; var kernel = [1, 4, 6, 4, 1, 4, 16, 24, 16, 4, 6, 24, 36, 24, 6, 4, 16, 24, 16, 4, 1, 4, 6, 4, 1 ]; for(i = dHeight; i--;){ dOffsetI = i * dWidth; for(j = dWidth; j--;){ for(c = 3; c--;){ newValue = 0; for(y = 2 + (i & 1); y--;){ offsetY = (y + ((i + 1) >> 1)) * mWidth * 4; for(x = 2 + (j & 1); x--;){ nowX = (x + ((j + 1) >> 1)) * 4 + c; newValue += (mData[offsetY + nowX] * kernel[(y * 2 + (i & 1 ^ 1)) * 5 + (x * 2 + (j & 1 ^ 1))]); } } dstData[(j + dOffsetI) * 4 + c] = newValue / 64; } dstData[(j + dOffsetI) * 4 + 3] = mData[offsetY + 2 * mWidth * 4 + (((j + 1) >> 1) + 2) * 4 + 3]; } } }else{ error(arguments.callee, UNSPPORT_DATA_TYPE/* {line} */); } return dst; };
效果图
系列目录
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构