FZU2082
树链剖分后要处理的是边的权值,而不是点的权值,但是只要边权下放到点,就可以了
如图
但是问题是,求图4->5路径的权值之和, 那么就会把点3给算进去
那么就要减去,
或者干脆不加进去
有两种方法
1 #include <stdio.h> 2 #include <string.h> 3 #include <stdlib.h> 4 #include <algorithm> 5 #include <iostream> 6 #include <queue> 7 #include <stack> 8 #include <vector> 9 #include <map> 10 #include <set> 11 #include <string> 12 #include <math.h> 13 using namespace std; 14 #pragma warning(disable:4996) 15 #pragma comment(linker, "/STACK:1024000000,1024000000") 16 typedef long long LL; 17 const int INF = 1<<30; 18 /* 19 12 1 20 1 2 1 21 2 3 1 22 3 4 1 23 4 5 1 24 5 11 1 25 11 12 1 26 1 6 1 27 6 7 1 28 7 8 1 29 6 9 1 30 6 10 1 31 1 9 10 32 */ 33 const int N = 50000 + 10; 34 vector<int> g[N]; 35 int size[N], son[N], fa[N], depth[N], top[N], w[N], num, ra[N]; 36 LL tree[N*4]; 37 int edge[N][3]; 38 int h[N]; 39 void dfs(int u) 40 { 41 size[u] = 1; 42 son[u] = 0; 43 for (int i = 0; i < g[u].size(); ++i) 44 { 45 int v = g[u][i]; 46 if (v != fa[u]) 47 { 48 fa[v] = u; 49 depth[v] = depth[u] + 1; 50 dfs(v); 51 size[u] += size[v]; 52 if (size[v] > size[son[u]]) 53 son[u] = v; 54 } 55 } 56 } 57 58 void dfs2(int u, int tp) 59 { 60 w[u] = ++num; 61 ra[num] = u; 62 top[u] = tp; 63 if (son[u] != 0) 64 dfs2(son[u], top[u]); 65 for (int i = 0; i < g[u].size(); ++i) 66 { 67 int v = g[u][i]; 68 if (v != fa[u] && v != son[u]) 69 dfs2(v, v); 70 } 71 72 } 73 void pushUp(int rt) 74 { 75 tree[rt] = tree[rt << 1] + tree[rt << 1 | 1]; 76 } 77 void update(int l, int r, int rt, int pos, int val) 78 { 79 if (l == r) 80 { 81 tree[rt] = val; 82 return; 83 } 84 int mid = (l + r) >> 1; 85 if (pos <= mid) 86 update(l, mid, rt << 1, pos, val); 87 else 88 update(mid + 1, r, rt << 1 | 1, pos, val); 89 pushUp(rt); 90 } 91 92 LL ans; 93 void query(int l, int r, int rt, int L, int R) 94 { 95 if (L <= l&&R >= r) 96 { 97 ans += tree[rt]; 98 return; 99 } 100 int mid = (l + r) >> 1; 101 if (L <= mid) 102 query(l, mid, rt << 1, L, R); 103 if (R > mid) 104 query(mid + 1, r, rt << 1 | 1, L, R); 105 } 106 int main() 107 { 108 int n, m, a, b, c; 109 while (scanf("%d%d", &n, &m) != EOF) 110 { 111 memset(tree, 0, sizeof(tree)); 112 for (int i = 1; i <= n; ++i) 113 g[i].clear(); 114 num = 0; 115 for (int i = 1; i < n; ++i) 116 { 117 scanf("%d%d%d", &edge[i][0], &edge[i][1], &edge[i][2]); 118 g[edge[i][0]].push_back(edge[i][1]); 119 g[edge[i][1]].push_back(edge[i][0]); 120 } 121 fa[1] = depth[1] = 0; 122 dfs(1); 123 dfs2(1, 1); 124 for (int i = 1; i < n; ++i) 125 { 126 if (depth[edge[i][0]] > depth[edge[i][1]]) 127 swap(edge[i][0], edge[i][1]); 128 h[edge[i][1]] = edge[i][2]; 129 update(1, n, 1, w[edge[i][1]], edge[i][2]); 130 } 131 while (m--) 132 { 133 scanf("%d%d%d", &a, &b, &c); 134 if (a == 0) 135 { 136 if (depth[edge[b][0]] > depth[edge[b][1]]) 137 swap(edge[b][0], edge[b][1]); 138 update(1, n, 1, w[edge[b][1]], c); 139 h[edge[b][1]] = c; 140 } 141 else 142 { 143 ans = 0; 144 while (top[b] != top[c]) 145 { 146 if (depth[top[b]] < depth[top[c]]) 147 swap(b, c); 148 query(1, n, 1, w[top[b]], w[b]); 149 b = fa[top[b]]; 150 } 151 //b和c一定是在一条链上 152 if (depth[b]>depth[c]) 153 swap(b, c); 154 155 156 //如果b有父亲,那么就有边下放到它,多加了这个点,要减去 157 query(1, n, 1, w[b], w[c]); 158 if (fa[b] != 0) 159 ans -= h[b]; 160 /* 161 如果b,c是在一条重链上, 那么询问w[son[b]] 到w[c] 162 那么就没有加到点b 163 否则,b,c就是指向同一点,那么w[son[b]] > w[c] , 询问是不会增加任何值的 164 query(1, n, 1, w[son[b]], w[c]); 165 */ 166 printf("%lld\n", ans); 167 } 168 } 169 } 170 return 0; 171 }