线性回归从零实现
#import packages and modules
%matplotlib inline
import torch
from IPython import display
import matplotlib.pyplot as plt
import numpy as np
import random
生成数据集
#set input feature number
number_inputs = 2
#set example number
number_examples = 1000
#set true weight and bias in order to gengerate corresponded label
true_w = [2,-3.4]
true_b = 4.2
features = torch.randn(number_examples,number_inputs,
dtype = torch.float32)
labels = true_w[0]*features[:,0]+true_w[1]*features[:,1]+true_b
图像显示
plt.scatter(features[:,1].numpy(),labels.numpy(),1);
读取数据集
def data_iter(batch_size,features,labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices)#random read 10 samples
for i in range(0,num_examples,batch_size):
j = torch.LongTensor(indices[i:min(i+batch_size,num_examples)])
yield features.index_select(0,j),labels.index_select(0,j)
batch_size = 10
for X,y in data_iter(batch_size,features,labels):
print(X,'\n',y)
break
初始化模型参数
w = torch.tensor(np.random.normal(0,0.01,(number_inputs,1)),dtype = torch.float32)
b = torch.zeros(1,dtype=torch.float32)
w.requires_grad_(requires_grad = True)
b.requires_grad_(requires_grad = True)
定义模型
def linreg(X,w,b):
return torch.mm(X,w)+b
定义损失函数
def square_loss(y_hat,y):
return (y_hat-y.view(y_hat.size()))**2/2
定义优化函数
def sgd(params,lr,batch_size):
for param in params:
param.data -= lr*param.grad/batch_size
训练
lr = 0.03
num_epoches = 5
net = linreg
loss = square_loss
# training
for epoch in range(num_epoches):
for X,y in data_iter(batch_size,features,labels):
l = loss(net(X,w,b),y).sum()
l.backward()
sgd([w,b],lr,batch_size)
w.grad.data.zero_()
b.grad.data.zero_()
train_1 = loss(net(features,w,b),labels)
print('epoch %d,loss%f' %(epoch+1,train_1.mean().item()))
pytorch的简洁实现
import torch
from torch import nn
import numpy as np
torch.manual_seed(1)
torch.set_default_tensor_type('torch.FloatTensor')
生成数据集
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
读取数据集
import torch.utils.data as Data
batch_size = 10
# combine featues and labels of dataset
dataset = Data.TensorDataset(features, labels)
# put dataset into DataLoader
data_iter = Data.DataLoader(
dataset=dataset, # torch TensorDataset format
batch_size=batch_size, # mini batch size
shuffle=True, # whether shuffle the data or not
#num_workers=2 # read data in multithreading
)
定义模型
class LinearNet(nn.Module):
def __init__(self,n_feature):
super(LinearNet,self).__init__()
self.linear = nn.Linear(n_feature,1)#unction prototype: `torch.nn.Linear(in_features, out_features, bias=True)
def forward(self,x):
y = self.linear(x)
return y
net = LinearNet(num_inputs)
print(net)
实现网络的三种形式
# ways to init a multilayer network
# method one
net = nn.Sequential(
nn.Linear(num_inputs,1)
)
#method two
net = nn.Sequential()
net.add_module('linear',nn.Linear(num_inputs,1))
#method three
from collections import OrderedDict
net = nn.Sequential(OrderedDict([
('linear',nn.Linear(num_inputs,1))
]))
### 初始化模型参数
```python
from torch.nn import init
init.normal_(net[0].weight,mean=0.0,std=0.01)
init.constant_(net[0].bias,val = 0.0)
损失函数与优化函数
loss = nn.MSELoss()
### 优化函数
import torch.optim as optim
optimizer = optim.SGD(net.parameters(),lr=0.03)
print(optimizer)
训练
### training
num_epoches = 3
for epoch in range(1,num_epoches + 1):
for X,y in data_iter:
output = net(X)
l = loss(output,y.view(-1,1))
optimizer.zero_grad()
l.backward()
optimizer.step()
print('epoch %d, loss: %f' % (epoch, l.item()))
dense = net[0]
print(true_w, dense.weight.data)
print(true_b, dense.bias.data)