DP练习题——洛谷P1970花匠
题目描述:
花匠栋栋种了一排花,每株花都有自己的高度。花儿越长越大,也越来越挤。栋栋决定把这排中的一部分花移走,将剩下的留在原地,使得剩下的花能有空间长大,同时,栋栋希望剩下的花排列得比较别致。
具体而言,栋栋的花的高度可以看成一列整数\(h_1,h_2,...,h_n\)。设当一部分花被移走后,剩下的花的高度依次为\(g_1,g_2,...,g_m\),则栋栋希望下面两个条件中至少有一个满足:
条件 \(A\):对于所有\(g_{2i}>g_{2i-1},g_{2i}>g_{2i+1}\)
条件 \(B\):对于所有\(g_{2i}<g_{2i-1},g_{2i}<g_{2i+1}\)
注意上面两个条件在\(m=1\)时同时满足,当\(m > 1\)时最多有一个能满足。
请问,栋栋最多能将多少株花留在原地。
输入输出格式:
输入格式:
第一行包含一个整数\(n\),表示开始时花的株数。
第二行包含\(n\)个整数,依次为\(h_1,h_2,...,h_n\),表示每株花的高度。
输出格式:
一个整数\(m\),表示最多能留在原地的花的株数。
输入输出样例:
输入样例:
5
5 3 2 1 2
输出样例:
3
题目分析:
简单理解一下题意:
大体就是说要求留在原地的花满足:序号为\(2\)的倍数的花是左右两盆花中最高或者是最矮的
解法一:
思路:
既然是\(DP\)的题,那么我们先考虑贪心(其实是为了纪念\(lz\)):
说句闲话:
学习\(DP\)的最好方法是什么??贪心!!!
好了好了,说正经的。
不过还是要吐槽这道题的算法标签,竟然没人评贪心(也不知道\(lz\)评了没有)
我们可以发现,这道题就是对一个有波动的函数进行简化,我们可以举两个例子,一个是样例:
我们可以把这个图像看做一个具有两个单调区间的函数图像,我们只能去单调区间两端的点构成新的序列,也就是说我们最多能保留三盆花
另一个是从讨论版里找来的神仙数据:
有了上面的分析,我们可以很轻易地找出\(3\)个单调区间,也就是说最多有\(4\)盆花能够被留下
算法:
根据两组数据,我们可以得到这样一个算法:
扫描所有花的高度,从而得出增减区间的个数\(w\),输出\(w+1\)
代码实现:
#include<cstdio>
#include<iostream>
using namespace std;
inline int read()
{
int F=1,num=0;
char c=getchar();
while(!isdigit(c)){if(c=='-') F=-1; c=getchar();}
while(isdigit(c)){num=num*10+c-'0'; c=getchar();}
return num*F;
}
int h[10000010];
int n;
int ans=1;//考虑到函数的左区间
int direction;
int main()
{
n=read();
for(int i=1;i<=n;++i)
h[i]=read();//读入
if(h[2]>=h[1]) direction=1;//1表示增区间,0表示减区间 ,因为前两个是默认都选的,所以在这里加上了等号
for(int i=1;i<=n;++i)//我知道可以边读入边判断,但是我愿意,你管着吗??
{
if(i==n)
{
ans++;//考虑到函数的右区间,当到了右区间时答案直接加一并且跳出循环
break;
}
if(h[i+1]>h[i])
{
if(direction==0)//如果突然进入到增区间,就标记为增区间并且答案加一
{
ans++;
direction=1;
}
}
if(h[i+1]<h[i])
{
if(direction==1)//如果突然进入到减区间,就标记为减区间并且答案加一
{
ans++;
direction=0;
}
}
}
printf("%d",ans);//输出答案
return 0;
}
解法二:
思路:
当然是已经哭晕在厕所的\(DP\)啦
\(dp[i][0]\)表示在\(i\)处上升时的最大盆数,\(dp[i][1]\)表示在\(i\)处下降时的最大盆数
直接得到状态转移方程
\(if(a[i]>a[i-1])\space\space\space dp[i][0]=dp[i-1][1]+1;\\if(a[i]<a[i-1])\space\space\space dp[i][1]=dp[i-1][0]+1;\\dp[i][0]=max(dp[i][0],dp[i-1][0]);\\dp[i][1]=max(dp[i][1],dp[i-1][1]);\)
解释一下:
当\(a[i]\)是上升的时候,将上升时的最大盆数更新为上一盆下降时的最大盆数+\(1\),并且用这两种状态的最大值来维护\(dp[i][0]\),表示满足条件\(B\)
当\(a[i]\)是下降的时候,将下降时的最大盆数更新为上一盆上升时的最大盆数+\(1\),并且用这两种状态的最小值来维护\(dp[i][1]\),表示满足条件\(A\)
如果还不能理解就画个图,手推一下233~~
算法:
就是将\(dp[1][1]\)和\(dp[1][0]\)都更新为\(1\),然后从\(2\)开始跑一遍循环,\(CV\)上面的方程就结束了
Talk is cheap,show me the code:
#include<cstdio>
#include<iostream>
using namespace std;
const int maxn=101000;
int dp[maxn][2],a[maxn];
int n;
inline int read()
{
int F=1,num=0;
char c=getchar();
while(!isdigit(c)){if(c=='-') F=-1; c=getchar();}
while(isdigit(c)){num=num*10+c-'0'; c=getchar();}
return F*num;
}
int main()
{
n=read();
dp[1][0]=1;dp[1][1]=1;
for(int i=1;i<=n;i++) a[i]=read();
for(int i=2;i<=n;i++)
{
if(a[i]>a[i-1]) dp[i][0]=dp[i-1][1]+1;
if(a[i]<a[i-1]) dp[i][1]=dp[i-1][0]+1;
dp[i][0]=max(dp[i][0],dp[i-1][0]);
dp[i][1]=max(dp[i][1],dp[i-1][1]);
}
printf("%d\n",max(dp[n][1],dp[n][0]));
return 0;
}
结语:
贪心大法真的好诶(逃