Loading

题解 P5591 【小猪佩奇学数学】

题意

\[\sum_{i=0}^n\tbinom{n}{i}p^i\lfloor\frac ik\rfloor \pmod {998244353} \]

\(1 \leq n,p <998244353,k \in \{2^{w}|0 \leq w \leq 20\}\)

题解

首先知道一个结论\([n|k]=\sum_{i=0}^{n-1}\omega_n^{ik}\),下面将用这个柿子乱搞。

\[\sum_{i=0}^n\tbinom{n}{i}p^i\lfloor\frac ik\rfloor \]

\[=\sum_{i=0}^n\tbinom{n}{i}p^i\frac{i-i\bmod k}{k} \]

\[=\frac{1}{k}\sum_{i=0}^n\tbinom{n}{i}p^i(i-i\bmod k) \]

\[=\frac{1}{k}(\sum_{i=0}^n\tbinom{n}{i}p^ii-\sum_{i=0}^n\tbinom{n}{i}p^i(i\bmod k)) \]

目标求出里面那坨。把式子拆成两部分。

\(\sum_{i=0}^n\tbinom{n}{i}p^ii\)

首先不难发现

\[\tbinom{n}{i}i=\frac{n!}{i!(n-i)!}i=\frac{n(n-1)!}{(i-1)!(n-i)!}=\tbinom{n-1}{i-1}n \]

于是我们将其带进去。不过需要注意\(i=0\)可能会出现负数,拎出来特判发现是\(0\)

\[\sum_{i=1}^n\tbinom{n-1}{i-1}np^i \]

\(i+1\)替换\(i\)

\[np\sum_{i=0}^{n-1}\tbinom{n-1}{i}p^{i} \]

然后二项式定理就十分显然了。

\[np(p+1)^{n-1} \]

\(\sum_{i=0}^n\tbinom{n}{i}p^i(i\bmod k)\)

这部分就是复习白兔之舞了。

\[\sum_{i=0}^n\sum_{t=0}^{k-1}[i\bmod k=t]\tbinom{n}{i}p^it \]

\[\sum_{i=0}^n\sum_{t=0}^{k-1}[k|(i-t)]\tbinom{n}{i}p^it \]

把一开始的公式套进去

\[\sum_{i=0}^n\sum_{t=0}^{k-1}\frac{1}{k}\sum_{j=0}^{k-1}\omega_k^{j(i-t)}\tbinom{n}{i}p^it \]

\[\frac{1}{k}\sum_{i=0}^n\sum_{t=0}^{k-1}\sum_{j=0}^{k-1}\omega_k^{ij}\omega_k^{-tj}\tbinom{n}{i}p^it \]

\[\frac{1}{k}\sum_{j=0}^{k-1}\sum_{t=0}^{k-1}t\omega_k^{-tj}\sum_{i=0}^n\tbinom{n}{i}\omega_k^{ij}p^i \]

后面那一串有点意思。

\[\frac{1}{k}\sum_{j=0}^{k-1}\sum_{t=0}^{k-1}t\omega_k^{-tj}\sum_{i=0}^n\tbinom{n}{i}(\omega_k^jp)^i \]

然后就把讨厌的循环\(n\)次弄没了

\[\frac{1}{k}\sum_{j=0}^{k-1}\sum_{t=0}^{k-1}t\omega_k^{-tj}(\omega_k^jp+1)^n \]

所以只需要对于\(j\in[0,k])\)求出后面一串的值就行了。这里用Bluestein's Algorithm,\(ij=\tbinom{i+j}{2}-\tbinom{i}{2}-\tbinom{j}{2}\)

\[\frac{1}{k}\sum_{j=0}^{k-1}\sum_{t=0}^{k-1}t\omega_k^{-\tbinom{t+j}{2}+\tbinom{t}{2}+\tbinom{j}{2}}(\omega_k^jp+1)^n \]

整理一下系数。

\[\frac{1}{k}\sum_{j=0}^{k-1}\omega_k^\tbinom{j}{2}(\omega_k^jp+1)^n\sum_{t=0}^{k-1}t\omega_k^{\tbinom{t}{2}}\times \omega_k^{-\tbinom{t+j}{2}} \]

里面随便卷卷就好了。记\(c_{k+j}=\text{后面一串}\),\(a_{k-i}=i\omega_k^{\tbinom{i}{2}},b_{i}=\omega_k^{-\tbinom{i}{2}}\),有:

\[c_{k+j}=\sum_{t=0}^{k-1}a_{k-t}b_{t+j} \]

卷积显而易见。

再带回去。

\[\frac{1}{k}\sum_{j=0}^{k-1}\omega_k^\tbinom{j}{2}(\omega_k^jp+1)^nc_{k+j} \]

代码

#include<bits/stdc++.h>
namespace in{
	char buf[1<<21],*p1=buf,*p2=buf;
	inline int getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
	template <typename T>inline void read(T& t){
		t=0;int f=0;char ch=getc();while (!isdigit(ch)){if(ch=='-')f = 1;ch=getc();}
	    while(isdigit(ch)){t=t*10+ch-48;ch = getc();}if(f)t=-t;
	}
	template <typename T,typename... Args> inline void read(T& t, Args&... args){read(t);read(args...);}
}
namespace out{
	char buffer[1<<21];int p1=-1;const int p2 = (1<<21)-1;
	inline void flush(){fwrite(buffer,1,p1+1,stdout),p1=-1;}
	inline void putc(const char &x) {if(p1==p2)flush();buffer[++p1]=x;}
	template <typename T>void write(T x) {
		static char buf[15];static int len=-1;if(x>=0){do{buf[++len]=x%10+48,x/=10;}while (x);}else{putc('-');do {buf[++len]=-(x%10)+48,x/=10;}while(x);}
		while (len>=0)putc(buf[len]),--len;
	}
}
using namespace std;
template<const int mod>
struct modint{
    int x;
    modint<mod>(int o=0){x=o;}
    modint<mod> &operator = (int o){return x=o,*this;}
    modint<mod> &operator +=(modint<mod> o){return x=x+o.x>=mod?x+o.x-mod:x+o.x,*this;}
    modint<mod> &operator -=(modint<mod> o){return x=x-o.x<0?x-o.x+mod:x-o.x,*this;}
    modint<mod> &operator *=(modint<mod> o){return x=1ll*x*o.x%mod,*this;}
    modint<mod> &operator ^=(int b){
        modint<mod> a=*this,c=1;
        for(;b;b>>=1,a*=a)if(b&1)c*=a;
        return x=c.x,*this;
    }
    modint<mod> &operator /=(modint<mod> o){return *this *=o^=mod-2;}
    modint<mod> &operator +=(int o){return x=x+o>=mod?x+o-mod:x+o,*this;}
    modint<mod> &operator -=(int o){return x=x-o<0?x-o+mod:x-o,*this;}
    modint<mod> &operator *=(int o){return x=1ll*x*o%mod,*this;}
    modint<mod> &operator /=(int o){return *this *= ((modint<mod>(o))^=mod-2);}
	template<class I>friend modint<mod> operator +(modint<mod> a,I b){return a+=b;}
    template<class I>friend modint<mod> operator -(modint<mod> a,I b){return a-=b;}
    template<class I>friend modint<mod> operator *(modint<mod> a,I b){return a*=b;}
    template<class I>friend modint<mod> operator /(modint<mod> a,I b){return a/=b;}
    friend modint<mod> operator ^(modint<mod> a,int b){return a^=b;}
    friend bool operator ==(modint<mod> a,int b){return a.x==b;}
    friend bool operator !=(modint<mod> a,int b){return a.x!=b;}
    bool operator ! () {return !x;}
    modint<mod> operator - () {return x?mod-x:0;}
	modint<mod> &operator++(int){return *this+=1;}
};
const int N=4e6+5;

const int mod=998244353;
const modint<mod> GG=3,Ginv=modint<mod>(1)/3,I=86583718;
struct poly{
	vector<modint<mod>>a;
	modint<mod>&operator[](int i){return a[i];}
	int size(){return a.size();}
	void resize(int n){a.resize(n);}
	void reverse(){std::reverse(a.begin(),a.end());}
};
int rev[N];
inline poly one(){poly a;a.a.push_back(1);return a;}
inline int ext(int n){int k=0;while((1<<k)<n)k++;return k;}
inline void init(int k){int n=1<<k;for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1));}
inline void ntt(poly&a,int k,int typ){
	int n=1<<k;
	for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
	for(int mid=1;mid<n;mid<<=1){
		modint<mod> wn=(typ>0?GG:Ginv)^((mod-1)/(mid<<1));
		for(int r=mid<<1,j=0;j<n;j+=r){
			modint<mod> w=1;
			for(int k=0;k<mid;k++,w=w*wn){
				modint<mod> x=a[j+k],y=w*a[j+k+mid];
				a[j+k]=x+y,a[j+k+mid]=x-y;
			}
		}
	}
	if(typ<0){
		modint<mod> inv=modint<mod>(1)/n;
		for(int i=0;i<n;i++)a[i]*=inv;
	}
}
inline poly operator*(poly a,poly b){
	int n=a.size()+b.size()-1,k=ext(n);
	a.resize(1<<k),b.resize(1<<k),init(k);
	ntt(a,k,1);ntt(b,k,1);for(int i=0;i<(1<<k);i++)a[i]*=b[i];
	ntt(a,k,-1),a.resize(n);return a;
}
typedef modint<mod>mint;
int n=3,p=3,k=2;
static mint fac[20];
namespace solve{
	mint w[N];
	#define C2(i) (1ll*(i)*((i)-1)/2)
	void run(){
		w[0]=1;w[1]=mint(3)^((mod-1)/k);for(int i=2;i<k;i++)w[i]=w[i-1]*w[1];
		mint ans=0;poly a,b,c;
		a.resize(k);b.resize(2*k);
		for(int i=0;i<k;i++)a[k-i]=w[C2(i)%k]*i;
		for(int i=0;i<2*k;i++)b[i]=w[((-C2(i))%k+k)%k];
		c=a*b;
		for(int j=0;j<k;j++)
			ans+=w[C2(j)%k]*((w[j%k]*p+1)^n)*c[k+j];
		ans=ans/k;
		out::write((((mint(p+1)^(n-1))*n*p-ans)/k).x);out::putc('\n');
	}
}
signed main(){
	in::read(n,p,k);
	solve::run();
	out::flush();
	return 0;
}

vector比较慢要O2才能过

posted @ 2021-01-08 19:19  caigou233  阅读(93)  评论(0编辑  收藏  举报