Leetcode1~10题整理

1. 两数之和

哈希表:O(n)

class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        unordered_map<int, int> hs;
        int n = nums.size();
        for(int i = 0; i < n; i++) {
            int x = target - nums[i];
            if(hs.count(x)) {
                return {hs[x], i};
            }
            hs[nums[i]] = i;
        }
        return {};
    }
};

2. 两数相加

为了方便定义一个虚拟头节点dummy,这样就不用特判第一个节点了

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {
        auto dummy = new ListNode(-1), cur = dummy;
        int t = 0;
        while(l1 || l2 || t) {
            if(l1) t += l1->val, l1 = l1->next;
            if(l2) t += l2->val, l2 = l2->next;
            cur->next = new ListNode(t % 10);
            t /= 10;
            cur = cur->next;
        }
        return dummy->next;
    }
};

3. 无重复字符的最长子串

双指针算法

class Solution {
public:
    int lengthOfLongestSubstring(string s) {
        int n = s.size();
        int res = 0;
        unordered_map<int, int> hs;
        for(int i = 0, j = 0; i < n; i++) {
            int x = s[i] - 'a';
            hs[x] ++;
            while(hs[x] > 1) {
                hs[s[j] - 'a']--;
                j++;
            }
            res = max(res, i - j + 1);
        }
        return res;
    }
};

4. 寻找两个正序数组的中位数

这道题"困难"标签是对特定做法来说的,像我这种菜鸡只能想到暴力合并然后排序 O((m+n)log(m+n))

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int n = nums1.size(), m = nums2.size();
        vector<int> nums(n + m);
        for(int i = 0; i < n; i++){
            nums[i] = nums1[i];
        }
        for(int i = 0;i < m;i++){
            nums[i + n] = nums2[i];
        }
        
        sort(nums.begin(), nums.end());
        
        int x = n + m;
        double res = 0.0;
        if(x % 2 == 0) {
            res = (nums[x / 2] + nums[x / 2 - 1]) * 1.0 / 2;
        }else {
            res = 1.0 * nums[x / 2];
        }
        return res;
    }
};

5. 最长回文子串

方法一:马拉车算法 O(n) , 很长时间不写了...

方法二:字符串哈希+二分:O(nlog(n))

首先在每两个字符之间加上一个#,保证字符串的长度为奇数,方便后面的判断

枚举中心点,二分求左右两边的长度r(回文子串的半径),如果左边字符串逆序的哈希值和右边的哈希值一样,那么这个回文子串的长度为2 * r + 1注意这个是包含#号的

typedef unsigned long long ull;
const int P = 131, N = 2010;

class Solution {
public:
    ull hl[N], hr[N], p[N];
    
    ull get(ull h[], int l, int r) {
        return h[r] - h[l - 1] * p[r - l + 1];
    }

    string longestPalindrome(string str) {
        int n = str.size();
        if(n == 1) {
            return str;
        }
        string s = "";
        for(int i = 0; i < n; i++) {
            s += '#';
            s += str[i];
        }
        n = 2 * n - 1;

        memset(hl, 0, sizeof(hl));
        memset(hr, 0, sizeof(hr));
        memset(p, 0, sizeof(p));
        p[0] = 1;
        for(int i = 1, j = n; i <= n; i++, j--) {
            hl[i] = hl[i - 1] * P + s[i] - 'a' + 1;
            hr[i] = hr[i - 1] * P + s[j] - 'a' + 1;
            p[i] = p[i - 1] * P;
        }

        string res = "";
        int len = 0;
        for(int i = 1; i <= n; i++) {
            int l = 0, r = min(i - 1, n - i);
            while(l < r) {
                int mid = (l + r + 1) >> 1;
                if(get(hl, i - mid, i - 1) != get(hr, n - i - mid + 1, n - i)) {
                    r = mid - 1;
                }else {
                    l = mid;
                }   
            }

            if (s[i - r] != '#') {
                if((r + 1) > len) {
                    res = s.substr(i - r, 2 * r + 1);
                    len = r + 1;
                }
            }
            else {
                if(r > len) {
                    res = s.substr(i - r, 2 * r + 1);
                    len = r;
                }
            }
        }

        string t = "";
        for(int i = 0; i < res.size(); i++) {
            if(res[i] != '#') t += res[i];
        }

        return t;
    }
};

方法三:双指针O(n^2)

枚举中点,然后用两个指针往两边走

class Solution {
public:
    string longestPalindrome(string s) {
        int n = s.size();
        string res = "";
        for(int i = 0; i < n; i++) {
            int l = i - 1, r = i + 1;
            while(l >= 0 && r < n && s[l] == s[r]) l--, r++;
            int t = r - l - 1;
            if(t > res.size()) res = s.substr(l + 1, t);
            
            l = i, r = i + 1;
            while(l >= 0 && r < n && s[l] == s[r]) l--, r++;
            t = r - l - 1;
            if(t > res.size()) res = s.substr(l + 1, t);
        }
        return res;
    }
};

方法四:区间DPO(n^2)

const int N = 1010;

class Solution {
public:
    bool dp[N][N];
    string longestPalindrome(string s) {
        int n = s.size();
        s = '#' + s;
        for(int i = 1; i <= n; i++) dp[i][i] = 1;
        for(int len = 2; len <= n; len++) {
            for(int i = 1; i + len - 1 <= n; i++) {
                int j = i + len - 1;
                if(len == 2) {
                    dp[i][j] = (s[i] == s[j]);
                    continue;
                }
                if(s[i] == s[j]) dp[i][j] |= dp[i + 1][j - 1];
                else dp[i][j] = 0;
            }
        }
        
        string res = "";
        for(int i = 1; i <= n; i++) {
            for(int j = i; j <= n; j++) {
                if(dp[i][j] && (j - i + 1) > res.size()) {
                    res = s.substr(i, j - i + 1);
                }
            }
        }
        return res;
    }
};

6. N 字形变换

方法一:找规律:

class Solution {
public:
    string convert(string s, int n) {
        string res = "";
        if(n == 1) return s;  //注意这里要特判
        for(int i = 0;i < n;i++){
            if(i == 0 || i == n-1) {
                for(int j = i;j < s.size();j += 2*n-2) {
                    res += s[j];
                }
            }else {
                for(int j = i,k = 2*n-2-i;j < s.size() || k < s.size();j += 2*n-2, k+=2*n-2) {
                    if(j < s.size()) res += s[j];
                    if(k < s.size()) res += s[k];
                }
            }
        }
        return res;
    }
};

方法二:模拟:

class Solution {
public:
    string convert(string s, int numRows) {
        int n = s.length(), r = numRows;
        if (r == 1 || r >= n) {
            return s;
        }
        int t = r * 2 - 2;
        int c = (n + t - 1) / t * (r - 1);
        vector<string> mat(r, string(c, 0));
        for (int i = 0, x = 0, y = 0; i < n; ++i) {
            mat[x][y] = s[i];
            if (i % t < r - 1) {
                ++x; // 向下移动
            } else {
                --x;
                ++y; // 向右上移动
            }
        }
        string ans;
        for (auto &row : mat) {
            for (char ch : row) {
                if (ch) {
                    ans += ch;
                }
            }
        }
        return ans;
    }
};


7. 整数反转

方法一:字符串翻转:

class Solution {
public:
    int reverse(int x) {
        int t = x > 0 ? 1 : -1;
        x = abs(x);
        string s = to_string(x);
        for(int i = 0, j = s.size() - 1; i <= j; i++, j--) {
            swap(s[i], s[j]);
        }
        x = 0;
        try{
            x = t * stoi(s);//变回数字
        }catch(exception ex){}
        return x;
    }
};

方法二:整数各位拆分,在循环过程中判断是否溢出:

class Solution {
public:
    int reverse(int x) {
        int res = 0;
        while(x) {
            if(x > 0 && res > (INT_MAX - x % 10) / 10) return 0;
            if(x < 0 && res < (INT_MIN - x % 10) / 10) return 0;
            res = res * 10 + x % 10;
            x /= 10;
        }
        return res;
    }
};

8. 字符串转换整数 (atoi)

模拟题:

find_first_not_of(' ') 找到字符串中第一个不是空格的位置,如果没有返回-1

class Solution {
public:
    int myAtoi(string s) {
        int n = s.size(), idx = s.find_first_not_of(' ');
        if(idx == -1) {
            // 表示字符串全为空格
            return 0;
        }
        
        int minus = 1;
        if(s[idx] == '-') {
            // 为负数
            minus = -1;
            idx++;
        }else if(s[idx] == '+') {
            idx++;
        }

        long long res = 0;
        while(idx < n && isdigit(s[idx])) {
            res = res * 10 + (s[idx] - '0');
            idx++;
            if(res > INT_MAX) break;
        }

        res *= minus;
        if(res > INT_MAX) res = INT_MAX;
        if(res < INT_MIN) res = INT_MIN;

        return res;
    }
};

9. 回文数

方法一:变成字符串

class Solution {
public:
    bool isPalindrome(int x) {
        string s = to_string(x);
        string t = string(s.rbegin(), s.rend());
        return s == t;
    }
};

方法二:直接做:

class Solution {
public:
    bool isPalindrome(int x) {
        if(x < 0) return false;
        int t = x;
        long long res = 0;
        while(t) {
            res = res * 10 + t % 10;
            t /= 10;
        }
        return res == x;
    }
};

10. 正则表达式匹配

经验之谈,两个字符串,dp两维

dp[i][j] 表示s[1~i]p[1~j]是否能够匹配(下标从1开始)

如果p[j] ≠ '*', 则dp[i][j] = (s[i] == p[j] || p[j] == '.') && dp[i-1][j-1] ,也就是只有当s[i]p[j]成功匹配的时候(当p[j]=='.'的时候一定能匹配)并且s[1~i-1]p[1~j-1]成功匹配的时候dp[i][j]才为1

如果p[j] == '*', 需要枚举*代表多少个p[j-1], 这和完全背包问题很像,可以借鉴完全背包问题的优化方法,所以dp[i][j] = (dp[i][j-2] || (dp[i-1][j] && s[i] == p[j-1]

注意dp[0][j] 也是有可能匹配的,所以i要从0开始循环

class Solution {
public:
    bool isMatch(string s, string p) {
        int n = s.size(), m = p.size();
        s = ' ' + s, p = ' ' + p;
        vector<vector<bool>> dp(n + 1, vector<bool>(m + 1));
        dp[0][0] = 1;
        for(int i = 0; i <= n; i++) {
            for(int j = 1; j <= m; j++) {
                if(j + 1 <= m && p[j + 1] == '*') continue;
                if(i && p[j] != '*') {
                    dp[i][j] = (s[i] == p[j] || p[j] == '.') && dp[i - 1][j - 1];
                }else if(p[j] == '*') {
                    dp[i][j]  = (dp[i][j-2] || (i && dp[i-1][j] && (s[i] == p[j-1] || p[j - 1] == '.')));
                }
            }
        }
        
        return dp[n][m];
    }
};
posted @ 2023-05-03 16:46  junlin623  阅读(14)  评论(0编辑  收藏  举报