spark集群安装[转]

========================================================================================
一、基础环境
========================================================================================
1、服务器分布
10.217.145.244  主名字节点
10.217.145.245  备名字节点
10.217.145.246  数据节点1
10.217.145.247  数据节点2
10.217.145.248  数据节点3

--------------------------------------------------------------------------------------------------------------------------------------------
2、HOSTS 设置
在每台服务器的“/etc/hosts”文件,添加如下内容:
10.217.145.244  namenode1
10.217.145.245  namenode2
10.217.145.246  datanode1
10.217.145.247  datanode2
10.217.145.248  datanode3

-------------------------------------------------------------------------------------------------------------------------------------------

3、SSH 免密码登录
可参考文章:

http://blog.csdn.net/codepeak/article/details/14447627

......

 

========================================================================================
二、Hadoop 2.2.0 编译安装【官方提供的二进制版本为32位版本,64位环境需重新编译】
========================================================================================
1、JDK 安装
http://download.oracle.com/otn-pub/java/jdk/7u45-b18/jdk-7u45-linux-x64.tar.gz

# tar xvzf jdk-7u45-linux-x64.tar.gz -C /usr/local
# cd /usr/local
# ln -s jdk1.7.0_45 jdk

 

# vim /etc/profile
export JAVA_HOME=/usr/local/jdk
export CLASS_PATH=$JAVA_HOME/lib:$JAVA_HOME/jre/lib
export PATH=$PATH:$JAVA_HOME/bin

 

# source /etc/profile

------------------------------------------------------------------------------------------------------------------------------------------

2、MAVEN 安装
http://mirror.bit.edu.cn/apache/maven/maven-3/3.1.1/binaries/apache-maven-3.1.1-bin.tar.gz

# tar xvzf apache-maven-3.1.1-bin.tar.gz -C /usr/local
# cd /usr/local
# ln -s apache-maven-3.1.1 maven

 

# vim /etc/profile
export MAVEN_HOME=/usr/local/maven
export PATH=$PATH:$MAVEN_HOME/bin

 

# source /etc/profile

 

# mvn -v

wKiom1LaF5nDNmaLAAGBQfFgMWY737.jpg

 

------------------------------------------------------------------------------------------------------------------------------------------

3、PROTOBUF 安装
https://protobuf.googlecode.com/files/protobuf-2.5.0.tar.gz

# tar xvzf protobuf-2.5.0.tar.gz
# ./configure --prefix=/usr/local/protobuf
# make && make install

 

# vim /etc/profile
export PROTO_HOME=/usr/local/protobuf
export PATH=$PATH:$PROTO_HOME/bin

 

# source /etc/profile

 

# vim /etc/ld.so.conf
/usr/local/protobuf/lib

 

# /sbin/ldconfig

------------------------------------------------------------------------------------------------------------------------------------------

4、其他依赖库安装
http://www.cmake.org/files/v2.8/cmake-2.8.12.1.tar.gz
http://ftp.gnu.org/pub/gnu/ncurses/ncurses-5.9.tar.gz
http://www.openssl.org/source/openssl-1.0.1e.tar.gz

# tar xvzf cmake-2.8.12.1.tar.gz
# cd cmake-2.8.12.1
# ./bootstrap --prefix=/usr/local
# gmake && gmake install

 

# tar xvzf ncurses-5.9.tar.gz
# cd ncurses-5.9
# ./configure --prefix=/usr/local
# make && make install

 

# tar xvzf openssl-1.0.1e.tar.gz
# cd openssl-1.0.1e
# ./config shared --prefix=/usr/local
# make && make install

 

# /sbin/ldconfig

------------------------------------------------------------------------------------------------------------------------------------------

5、编译 Hadoop
http://mirrors.hust.edu.cn/apache/hadoop/common/hadoop-2.2.0/hadoop-2.2.0-src.tar.gz

(1)、maven源设置【在<mirrors></mirros>里添加】
# vim /usr/local/maven/conf/settings.xml

1
2
3
4
5
6
<mirror>
    <id>nexus-osc</id>
    <mirrorOf>*</mirrorOf>
    <name>Nexusosc</name>
    <url>http://maven.oschina.net/content/groups/public/</url>
</mirror>

 

(2)、编译Hadoop
# tar xvzf hadoop-2.2.0-src.tar.gz
# cd hadoop-2.2.0-src
# mvn clean install -DskipTests
# mvn package -Pdist,native -DskipTests -Dtar

wKiom1LZfYfiL64UAAJQJ9LcZVE805.jpg

 

## 编译成功后,生成的二进制包所在路径
hadoop-dist/target/hadoop-2.2.0

 

# cp -a hadoop-dist/target/hadoop-2.2.0 /usr/local
# cd /usr/local
# ln -s hadoop-2.2.0 hadoop

 

【注意:编译过程中,可能会失败,需要多尝试几次】

 

========================================================================================
三、Hadoop YARN 分布式集群配置【注:所有节点都做同样配置】
========================================================================================
1、环境变量设置
# vim /etc/profile
export HADOOP_HOME=/usr/local/hadoop
export HADOOP_PID_DIR=/data/hadoop/pids
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="$HADOOP_OPTS -Djava.library.path=$HADOOP_HOME/lib/native"

 

export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME

 

export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export HDFS_CONF_DIR=$HADOOP_HOME/etc/hadoop
export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop

 

export JAVA_LIBRARY_PATH=$HADOOP_HOME/lib/native

 

export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

 

# source /etc/profile

------------------------------------------------------------------------------------------------------------------------------------------

2、相关路径创建
mkdir -p /data/hadoop/{pids,storage}
mkdir -p /data/hadoop/storage/{hdfs,tmp}
mkdir -p /data/hadoop/storage/hdfs/{name,data}

------------------------------------------------------------------------------------------------------------------------------------------

3、配置 core-site.xml
# vim /usr/local/hadoop/etc/hadoop/core-site.xml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://namenode1:9000</value>
    </property>
    <property>
        <name>io.file.buffer.size</name>
        <value>131072</value>
    </property>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>file:/data/hadoop/storage/tmp</value>
    </property>
    <property>
        <name>hadoop.proxyuser.hadoop.hosts</name>
        <value>*</value>
    </property>
    <property>
        <name>hadoop.proxyuser.hadoop.groups</name>
        <value>*</value>
    </property>
    <property>
        <name>hadoop.native.lib</name>
        <value>true</value>
    </property>
</configuration>

 

------------------------------------------------------------------------------------------------------------------------------------------

4、配置 hdfs-site.xml
# vim /usr/local/hadoop/etc/hadoop/hdfs-site.xml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
<configuration>
    <property>
        <name>dfs.namenode.secondary.http-address</name>
        <value>namenode2:9000</value>
    </property>
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>file:/data/hadoop/storage/hdfs/name</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>file:/data/hadoop/storage/hdfs/data</value>
    </property>
    <property>
        <name>dfs.replication</name>
        <value>3</value>
    </property>
    <property>
        <name>dfs.webhdfs.enabled</name>
        <value>true</value>
    </property>
</configuration>

 

------------------------------------------------------------------------------------------------------------------------------------------

5、配置 mapred-site.xml
# vim /usr/local/hadoop/etc/hadoop/mapred-site.xml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>namenode1:10020</value>
    </property>
                                                                                                                                                                                                               
    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>namenode1:19888</value>
    </property>
</configuration>

 

------------------------------------------------------------------------------------------------------------------------------------------

6、配置 yarn-site.xml
# vim /usr/local/hadoop/etc/hadoop/yarn-site.xml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
<configuration>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
        <value>org.apache.hadoop.mapred.ShuffleHandler</value>
    </property>
    <property>
        <name>yarn.resourcemanager.scheduler.address</name>
        <value>namenode1:8030</value>
    </property>
    <property>
        <name>yarn.resourcemanager.resource-tracker.address</name>
        <value>namenode1:8031</value>
    </property>
    <property>
        <name>yarn.resourcemanager.address</name>
        <value>namenode1:8032</value>
    </property>
    <property>
        <name>yarn.resourcemanager.admin.address</name>
        <value>namenode1:8033</value>
    </property>
    <property>
        <name>yarn.resourcemanager.webapp.address</name>
        <value>namenode1:80</value>
    </property>
</configuration>

 

------------------------------------------------------------------------------------------------------------------------------------------

7、配置 hadoop-env.sh、mapred-env.sh、yarn-env.sh【在开头添加】
文件路径:
/usr/local/hadoop/etc/hadoop/hadoop-env.sh
/usr/local/hadoop/etc/hadoop/mapred-env.sh
/usr/local/hadoop/etc/hadoop/yarn-env.sh

 

添加内容:
export JAVA_HOME=/usr/local/jdk
export CLASS_PATH=$JAVA_HOME/lib:$JAVA_HOME/jre/lib

 

export HADOOP_HOME=/usr/local/hadoop
export HADOOP_PID_DIR=/data/hadoop/pids
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="$HADOOP_OPTS -Djava.library.path=$HADOOP_HOME/lib/native"

 

export HADOOP_PREFIX=$HADOOP_HOME

 

export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME

 

export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export HDFS_CONF_DIR=$HADOOP_HOME/etc/hadoop
export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop

 

export JAVA_LIBRARY_PATH=$HADOOP_HOME/lib/native

 

export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

------------------------------------------------------------------------------------------------------------------------------------------

8、数据节点配置
# vim /usr/local/hadoop/etc/hadoop/slaves
datanode1
datanode2
datanode3

------------------------------------------------------------------------------------------------------------------------------------------

9、Hadoop 简单测试
# cd /usr/local/hadoop

 

## 首次启动集群时,做如下操作【主名字节点上执行】
# hdfs namenode -format
# sbin/start-dfs.sh

 

## 检查进程是否正常启动
# jps

主名字节点:

wKioL1LaEMrjQacwAABONcvG8Dg225.jpg

 

备名字节点:

wKiom1LaEQuSjLGuAABH6tWl1S8405.jpg

 

数据节点:

wKioL1LaEPqAOUDNAABMHLxKK3A134.jpg

 

## hdfs与mapreduce测试
# hdfs dfs -mkdir -p /user/rocketzhang
# hdfs dfs -put bin/hdfs.cmd /user/rocketzhang
# hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /user/rocketzhang /user/out
# hdfs dfs -ls /user/out

 

## hdfs信息查看
# hdfs dfsadmin -report
# hdfs fsck / -files -blocks

 

## 集群的后续维护
# sbin/start-all.sh
# sbin/stop-all.sh

 

## 监控页面URL
http://10.217.145.244:80/

wKioL1LaEiOgqZFVAAPOXzy-ieA205.jpg

 

========================================================================================
四、Spark 分布式集群配置【注:所有节点都做同样配置】
========================================================================================
1、Scala 安装
http://www.scala-lang.org/files/archive/scala-2.9.3.tgz

# tar xvzf scala-2.9.3.tgz -C /usr/local
# cd /usr/local
# ln -s scala-2.9.3 scala

 

# vim /etc/profile
export SCALA_HOME=/usr/local/scala
export PATH=$PATH:$SCALA_HOME/bin

 

# source /etc/profile

------------------------------------------------------------------------------------------------------------------------------------------

2、Spark 安装
http://d3kbcqa49mib13.cloudfront.net/spark-0.8.1-incubating-bin-hadoop2.tgz

# tar xvzf spark-0.8.1-incubating-bin-hadoop2.tgz -C /usr/local
# cd /usr/local
# ln -s spark-0.8.1-incubating-bin-hadoop2 spark

 

# vim /etc/profile
export SPARK_HOME=/usr/local/spark
export PATH=$PATH:$SPARK_HOME/bin

 

# source /etc/profile

 

# cd /usr/local/spark/conf
# mv spark-env.sh.template spark-env.sh

# vim spark-env.sh
export JAVA_HOME=/usr/local/jdk
export SCALA_HOME=/usr/local/scala
export HADOOP_HOME=/usr/local/hadoop

 

## worker节点的主机名列表
# vim slaves
datanode1
datanode2
datanode3

 

# mv log4j.properties.template log4j.properties

## 在Master节点上执行
# cd /usr/local/spark && .bin/start-all.sh

 

## 检查进程是否启动【在master节点上出现“Master”,在slave节点上出现“Worker”】
# jps

Master节点:

wKioL1LaE7zwSI2KAABylj7nVfk839.jpg

 

Slave节点:

wKiom1LaFDnT4bAqAABuLr2Rlm8322.jpg

------------------------------------------------------------------------------------------------------------------------------------------

3、相关测试
## 监控页面URL
http://10.217.145.244:8080/

wKioL1LaFMXCcqgxAAQWNSUG3xU978.jpg

 

## 先切换到“/usr/local/spark”目录
(1)、本地模式
# ./run-example org.apache.spark.examples.SparkPi local

 

(2)、普通集群模式
# ./run-example org.apache.spark.examples.SparkPi spark://namenode1:7077
# ./run-example org.apache.spark.examples.SparkLR spark://namenode1:7077
# ./run-example org.apache.spark.examples.SparkKMeans spark://namenode1:7077 file:/usr/local/spark/kmeans_data.txt 2 1

 

(3)、结合HDFS的集群模式
# hadoop fs -put README.md .
# MASTER=spark://namenode1:7077 ./spark-shell
scala> val file = sc.textFile("hdfs://namenode1:9000/user/root/README.md")
scala> val count = file.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_+_)
scala> count.collect()
scala> :quit

 

(4)、基于YARN模式
# SPARK_JAR=./assembly/target/scala-2.9.3/spark-assembly_2.9.3-0.8.1-incubating-hadoop2.2.0.jar \
./spark-class org.apache.spark.deploy.yarn.Client \
--jar examples/target/scala-2.9.3/spark-examples_2.9.3-assembly-0.8.1-incubating.jar \
--class org.apache.spark.examples.SparkPi \
--args yarn-standalone \
--num-workers 3 \
--master-memory 4g \
--worker-memory 2g \
--worker-cores 1

 

执行结果:
/usr/local/hadoop/logs/userlogs/application_*/container*_000001/stdout

 

(5)、其他一些样例程序
examples/src/main/scala/org/apache/spark/examples/

 

(6)、问题定位【数据节点上的日志】
/data/hadoop/storage/tmp/nodemanager/logs

 

(7)、一些优化
# vim /usr/local/spark/conf/spark-env.sh
export SPARK_WORKER_MEMORY=16g  【根据内存大小进行实际配置】
......

 

(8)、最终的目录结构

wKiom1LaFo3imq2xAAQBAYjboVQ885.jpg

 

========================================================================================
五、Shark 数据仓库【后续补上】
========================================================================================
https://github.com/amplab/shark/releases

 

 

本文出自 “人生理想在于坚持不懈” 博客,请务必保留此出处http://sofar.blog.51cto.com/353572/1352713

posted on 2017-02-07 14:45  junle  阅读(282)  评论(0编辑  收藏  举报