洛谷 P3327 [SDOI2015]约数个数和
题意:
$d(n)$为$n$的约数个数, 求$\sum_{i = 1} ^ {n}\sum_{j = 1}^{m}d(i * j)$
思路:
$d(i * j) = \sum_{x|i}\sum_{y|j}[gcd(x, y) = 1]$
$= \sum_{x | i}\sum_{y | j}\sum_{k | gcd(x, y)}\mu(k)$
$= \sum_{k}\mu(k)\sum_{x | i}\sum_{y | j}[k | x][k | y]$
$= \sum_{k}\mu(k)\sum_{x | \frac{i}{k}}\sum_{y|\frac{j}{k}}$
$= \sum_{k}\mu(k)d(\frac{i}{k})d(\frac{j}{k})$
则$\sum_{i = 1} ^ {n}\sum_{j = 1}^{m}d(i * j)$
$=\sum_{k}\mu(k)\sum_{i = 1} ^ {n}d(\frac{i}{k})\sum_{j = 1}^{m} d(\frac{j}{k})$
$=\sum_{k}\mu(k)\sum_{i = 1} ^ {\lfloor\frac{n}{k}\rfloor} d(i)\sum_{j = 1}^{\lfloor\frac{m}{k}\rfloor} d(j)$
线性筛求$mu(i)$和$d(i)$的前缀和,分块求解
Code:
#pragma GCC optimize(3) #pragma GCC optimize(2) #include <map> #include <set> // #include <array> #include <cmath> #include <queue> #include <stack> #include <vector> #include <cstdio> #include <cstring> #include <sstream> #include <iostream> #include <stdlib.h> #include <algorithm> // #include <unordered_map> using namespace std; typedef long long ll; typedef pair<int, int> PII; #define Time (double)clock() / CLOCKS_PER_SEC #define sd(a) scanf("%d", &a) #define sdd(a, b) scanf("%d%d", &a, &b) #define slld(a) scanf("%lld", &a) #define slldd(a, b) scanf("%lld%lld", &a, &b) const int N = 1e7 + 20; const int M = 1e5 + 20; const int mod = 1e9 + 7; const double eps = 1e-6; ll cnt = 0, primes[N], phi[N], mu[N], d[N], c[N], sum[N] = {0}, sd[N] = {0}; map<ll, ll> su; bool st[N]; int n, m, p, k; void get(ll n){ // phi[1] = 1; mu[1] = 1; d[1] = 1; for(ll i = 2; i <= n; i ++){ if(!st[i]){ primes[cnt ++] = i; // phi[i] = i - 1; mu[i] = -1; d[i] = 2; c[i] = 1; } for(int j = 0; primes[j] <= n / i; j ++){ st[i * primes[j]] = true; if(i % primes[j] == 0){ // phi[i * primes[j]] = primes[j] * phi[i]; mu[i * primes[j]] = 0; d[i * primes[j]] = d[i] / (c[i] + 1) * (c[i] + 2); c[i * primes[j]] = c[i] + 1; break; } // phi[i * primes[j]] = (primes[j] - 1) * phi[i]; mu[i * primes[j]] = - mu[i]; d[i * primes[j]] = d[i] * 2; c[i * primes[j]] = 1; } } for(int i = 1; i <= n; i ++){ sum[i] = sum[i - 1] + mu[i]; } for(int i = 1; i <= n; i ++){ sd[i] = sd[i - 1] + d[i]; } } ll cal(int a, int b){ ll res = 0; if(a > b) swap(a, b); for(int l = 1, r; l <= a; l = r + 1){ r = min(a / (a / l), b / (b / l)); res += (sum[r] - sum[l - 1]) * sd[a / l] * sd[b / l]; } return res; } void solve() { int n, m; sdd(n, m); printf("%lld\n", cal(n, m)); } int main() { #ifdef ONLINE_JUDGE #else freopen("/home/jungu/code/in.txt", "r", stdin); // freopen("/home/jungu/code/out.txt", "w", stdout); // freopen("/home/jungu/code/practice/out.txt","w",stdout); #endif // ios::sync_with_stdio(false); cin.tie(0), cout.tie(0); int T = 1; sd(T); k = 50000; get(k); // init(10000000); // int cas = 1; while (T--) { // printf("Case #%d:", cas++); solve(); } return 0; }