洛谷 P2522 [HAOI2011]Problem b
题意:
求$\sum_{x=a}^{b}\sum_{y=c}^{d}[\gcd(x, y) = k]$
思路:
$ \sum_{x=a}^{b}\sum_{y=c}^{d}[\gcd(x, y) = k]$
$ = \sum_{x=a}^{b}(\sum_{y=1}^{d}[\gcd(x, y) = k] - \sum_{y=1}^{c-1}[\gcd(x, y) = k])$
$ = \sum_{x=1}^{b}(\sum_{y=1}^{d}[\gcd(x, y) = k] - \sum_{y=1}^{c-1}[\gcd(x, y) = k]) - \sum_{x=1}^{a - 1}(\sum_{y=1}^{d}[\gcd(x, y) = k] - \sum_{y=1}^{c-1}[\gcd(x, y) = k])$
$ = \sum_{x=1}^{b}\sum_{y=1}^{d}[\gcd(x, y) = k] - \sum_{x=1}^{b}\sum_{y=1}^{c-1}[\gcd(x, y) = k] - \sum_{x=1}^{a-1}\sum_{y=1}^{d}[\gcd(x, y) = k] + \sum_{x=1}^{a-1}\sum_{y=1}^{c-1}[\gcd(x, y) = k]$
令$sum(n, m) = \sum_{x=1}^{n}\sum_{y=1}^{m}[\gcd(x, y) = k]$, 对$sum(n, m)$进行计算:
$ \sum_{x=1}^{n}\sum_{y=1}^{m}[\gcd(x, y) = k]$
$= \sum_{x=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{k}\rfloor}[\gcd(x, y) = 1]$
$ = \sum_{x=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{k}\rfloor}\varepsilon(\gcd(i, j))$
$ = \sum_{x=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{k}\rfloor}\sum_{i|\gcd(x, y)} \mu(i)$
$ = \sum_{i=1} \mu(i) \sum_{x=1}^{\lfloor\frac{n}{k}\rfloor}[i | x]\sum_{y=1}^{\lfloor\frac{m}{k}\rfloor}[i | y]$
$ = \sum_{i=1} \lfloor\frac{n}{ki}\rfloor \lfloor\frac{m}{ki}\rfloor$
即:$sum(n, m) = \sum_{i=1} \lfloor\frac{n}{ki}\rfloor \lfloor\frac{m}{ki}\rfloor$
代入原式:$ans = sum(b, d) - sum(b, c - 1) - sum(a - 1, d) + sum(a - 1, c - 1)$即为答案
Code:
#pragma GCC optimize(3) #pragma GCC optimize(2) #include <map> #include <set> // #include <array> #include <cmath> #include <queue> #include <stack> #include <vector> #include <cstdio> #include <cstring> #include <sstream> #include <iostream> #include <stdlib.h> #include <algorithm> // #include <unordered_map> using namespace std; typedef long long ll; typedef pair<int, int> PII; #define Time (double)clock() / CLOCKS_PER_SEC #define sd(a) scanf("%d", &a) #define sdd(a, b) scanf("%d%d", &a, &b) #define slld(a) scanf("%lld", &a) #define slldd(a, b) scanf("%lld%lld", &a, &b) const int N = 1e7 + 20; const int M = 1e5 + 20; const int mod = 1e9 + 7; const double eps = 1e-6; ll cnt = 0, primes[N], phi[N], mu[N], sum[N] = {0}; map<ll, ll> su; bool st[N]; int n, m, p, k; void get(ll n){ // phi[1] = 1; mu[1] = 1; for(ll i = 2; i <= n; i ++){ if(!st[i]){ primes[cnt ++] = i; // phi[i] = i - 1; mu[i] = -1; } for(int j = 0; primes[j] <= n / i; j ++){ st[i * primes[j]] = true; if(i % primes[j] == 0){ // phi[i * primes[j]] = primes[j] * phi[i]; mu[i * primes[j]] = 0; break; } // phi[i * primes[j]] = (primes[j] - 1) * phi[i]; mu[i * primes[j]] = - mu[i]; } } for(int i = 1; i <= n; i ++){ sum[i] = sum[i - 1] + mu[i]; } } int get_sum(int n){ if(n <= k) return sum[n]; if(su[n]) return su[n]; ll res = 1; for(int i = 2, r; i <= n; i = r + 1){ r = n / (n / i); res -= (r - i + 1) * get_sum(n / i); } return su[n] = res; } int cal(int a, int b){ int res = 0, mid1, mid2 = 0; if(a > b) swap(a, b); for(int i = 1, r; i <= a; i = r + 1){ r = min(a / (a / i), b / (b / i)); mid1 = get_sum(r); res = res + (mid1 - mid2) * (a / i) * (b / i); mid2 = mid1; } return res; } void solve() { int a, b, c, d, kk; sdd(a, b); sdd(c, d); sd(kk); a --, c --; a /= kk, b /= kk, c /= kk, d /= kk; int ans = cal(b, d) - cal(b, c) - cal(a, d) + cal(a, c); cout << ans << endl; } int main() { #ifdef ONLINE_JUDGE #else freopen("/home/jungu/code/in.txt", "r", stdin); // freopen("/home/jungu/code/out.txt", "w", stdout); // freopen("/home/jungu/code/practice/out.txt","w",stdout); #endif // ios::sync_with_stdio(false); cin.tie(0), cout.tie(0); int T = 1; sd(T); k = (int)pow(50000, 0.666667); get(k); // init(10000000); // int cas = 1; while (T--) { // printf("Case #%d:", cas++); solve(); } return 0; }