02获取数据集并处理(iris)

获取数据-iris,划分训练集和测试集

from sklearn.datasets import load_iris
# 1.获取数据集(iris)
iris = load_iris()
# print("iris数据集内容:", iris) # data,target,target_name
print("训练数据集形状:", iris.data.shape)
print("目标值形状:", iris.target.shape)
print("目标值名称:", iris.target_names)
# 2.数据集划分
from sklearn.model_selection import train_test_split # test_size,train_size,random_stat
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target,test_size=0.25)  
print("训练集x-y:", x_train.shape, y_train.shape)
print("测试集x-y:", x_test.shape, y_test.shape)

运行结果:

训练数据集形状: (150, 4)
目标值形状: (150,)
目标值名称: ['setosa' 'versicolor' 'virginica']
训练集x-y: (112, 4) (112,)
测试集x-y: (38, 4) (38,)

 

posted @ 2019-09-15 01:45  Jumpkin1122  阅读(882)  评论(0编辑  收藏  举报