如何读取R 的sumary()结果

思路

step 1: sum = summary(model)
step 2: sum有好多属性,直接根据属性名称引用(\()即可, 如: + > sum\)call 返回 model 使用的模型语句
+ > sum\(coefficients; 返回一个列表,可以继续引用,如下 + > sum\)coefficients[1 : 12]; 返回一个列表的一个切片,还可以继续切片
+ > sum$coefficients[1 : 12][2]; 返回一个列表的一个切片的第二个元素

下面是一些 测试代码,未整理,可以大致学习一下

用'demo()'来看一些示范程序,用'help()'来阅读在线帮助文件,或
用'help.start()'通过HTML浏览器来看帮助文件。
用'q()'退出R.

[Workspace loaded from ~/.RData]

> y=c(53,434,111,38,108,48)
> x1=c(1,2,3,1,2,3)
> x2=c(1,2,1,2,1,2)
> log.glm <-glm(y~x1+x2,family = possion(link=log))
Error in possion(link = log) : 没有"possion"这个函数
> log.glm <-glm(y~x1+x2,family = possion(link=log),data=(y,x1,x2))
错误: 意外的',' in "log.glm <-glm(y~x1+x2,family = possion(link=log),data=(y,"
> dataframe <-data.frame(y,x1,x2)
> head(dataframe)
    y x1 x2
1  53  1  1
2 434  2  2
3 111  3  1
4  38  1  2
5 108  2  1
6  48  3  2
> log.glm <-glm(y~x1+x2,family = possion(link=log),data=data.frame(y,x1,x2))
Error in possion(link = log) : 没有"possion"这个函数
> log.glm <-glm(y~x1+x2,family = poisson(link=log),data=data.frame(y,x1,x2))
> summary(log.glm)

Call:
glm(formula = y ~ x1 + x2, family = poisson(link = log), data = data.frame(y, 
    x1, x2))

Deviance Residuals: 
       1         2         3         4         5         6  
 -3.1382   16.6806    0.8189  -11.0398    1.8210  -12.6942  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  3.59532    0.15792  22.767  < 2e-16 ***
x1           0.12915    0.04370   2.955  0.00312 ** 
x2           0.64803    0.07483   8.660  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 662.84  on 5  degrees of freedom
Residual deviance: 575.10  on 3  degrees of freedom
AIC: 619.08

Number of Fisher Scoring iterations: 5

> log.glm.x1
错误: 找不到对象'log.glm.x1'
> 
> 
> 
> 
> 
> 
> summary(log.glm)

Call:
glm(formula = y ~ x1 + x2, family = poisson(link = log), data = data.frame(y, 
    x1, x2))

Deviance Residuals: 
       1         2         3         4         5         6  
 -3.1382   16.6806    0.8189  -11.0398    1.8210  -12.6942  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  3.59532    0.15792  22.767  < 2e-16 ***
x1           0.12915    0.04370   2.955  0.00312 ** 
x2           0.64803    0.07483   8.660  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 662.84  on 5  degrees of freedom
Residual deviance: 575.10  on 3  degrees of freedom
AIC: 619.08

Number of Fisher Scoring iterations: 5

> log.glm.x1
错误: 找不到对象'log.glm.x1'
> help("glm")
> anova(log.glm)
Analysis of Deviance Table

Model: poisson, link: log

Response: y

Terms added sequentially (first to last)


     Df Deviance Resid. Df Resid. Dev
NULL                     5     662.84
x1    1    8.770         4     654.07
x2    1   78.978         3     575.10
> ano= anova(log.glm)
> ano[1]
     Df
NULL   
x1    1
x2    1
> ano[2]
     Deviance
NULL         
x1      8.770
x2     78.978
> ano[3]
     Resid. Df
NULL         5
x1           4
x2           3
> sum= summary(log.glm)
> sum

Call:
glm(formula = y ~ x1 + x2, family = poisson(link = log), data = data.frame(y, 
    x1, x2))

Deviance Residuals: 
       1         2         3         4         5         6  
 -3.1382   16.6806    0.8189  -11.0398    1.8210  -12.6942  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  3.59532    0.15792  22.767  < 2e-16 ***
x1           0.12915    0.04370   2.955  0.00312 ** 
x2           0.64803    0.07483   8.660  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 662.84  on 5  degrees of freedom
Residual deviance: 575.10  on 3  degrees of freedom
AIC: 619.08

Number of Fisher Scoring iterations: 5

> sum[1]
$call
glm(formula = y ~ x1 + x2, family = poisson(link = log), data = data.frame(y, 
    x1, x2))

> sum[1,1]
Error in sum[1, 1] : 量度数目不对
> sum[2]
$terms
y ~ x1 + x2
attr(,"variables")
list(y, x1, x2)
attr(,"factors")
   x1 x2
y   0  0
x1  1  0
x2  0  1
attr(,"term.labels")
[1] "x1" "x2"
attr(,"order")
[1] 1 1
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>
attr(,"predvars")
list(y, x1, x2)
attr(,"dataClasses")
        y        x1        x2 
"numeric" "numeric" "numeric" 

> sum[3]
$family

Family: poisson 
Link function: log 


> sum[4]
$deviance
[1] 575.0954

> sum[4,1]
Error in sum[4, 1] : 量度数目不对
> sum

Call:
glm(formula = y ~ x1 + x2, family = poisson(link = log), data = data.frame(y, 
    x1, x2))

Deviance Residuals: 
       1         2         3         4         5         6  
 -3.1382   16.6806    0.8189  -11.0398    1.8210  -12.6942  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  3.59532    0.15792  22.767  < 2e-16 ***
x1           0.12915    0.04370   2.955  0.00312 ** 
x2           0.64803    0.07483   8.660  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 662.84  on 5  degrees of freedom
Residual deviance: 575.10  on 3  degrees of freedom
AIC: 619.08

Number of Fisher Scoring iterations: 5

> sum[5]
$aic
[1] 619.0808

> sum[6]
$contrasts
NULL

> sum[8]
$null.deviance
[1] 662.8432

> sum[9]
$df.null
[1] 5

> sum[10]
$iter
[1] 5

> sum$aic
[1] 619.0808
> sum$null.deviance
[1] 662.8432
> sum$residual.deviance
NULL
> sum$residual.devianc
NULL
> sum[11]
$deviance.resid
          1           2           3           4           5           6 
 -3.1382350  16.6805594   0.8189003 -11.0397892   1.8209720 -12.6941833 

> summary.aov()
Error in summary.aov() : 缺少参数"object",也没有缺省值
> sum

Call:
glm(formula = y ~ x1 + x2, family = poisson(link = log), data = data.frame(y, 
    x1, x2))

Deviance Residuals: 
       1         2         3         4         5         6  
 -3.1382   16.6806    0.8189  -11.0398    1.8210  -12.6942  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  3.59532    0.15792  22.767  < 2e-16 ***
x1           0.12915    0.04370   2.955  0.00312 ** 
x2           0.64803    0.07483   8.660  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 662.84  on 5  degrees of freedom
Residual deviance: 575.10  on 3  degrees of freedom
AIC: 619.08

Number of Fisher Scoring iterations: 5

> sum$coefficients
             Estimate Std. Error   z value      Pr(>|z|)
(Intercept) 3.5953201 0.15791713 22.767132 9.709542e-115
x1          0.1291456 0.04370053  2.955240  3.124256e-03
x2          0.6480267 0.07482977  8.660013  4.717107e-18
> sum$coefficients[4]
[1] 0.1579171
> sum$coefficients[5]
[1] 0.04370053
> sum$coefficients[6]
[1] 0.07482977
> sum$coefficients[1]
[1] 3.59532
> sum$coefficients[1..2]
错误: unexpected numeric constant in "sum$coefficients[1..2"
> sum$coefficients[1:2]
[1] 3.5953201 0.1291456
> sum$coefficients[1:5]
[1] 3.59532005 0.12914558 0.64802675 0.15791713 0.04370053
> sum$coefficients[11:12]
[1] 3.124256e-03 4.717107e-18
> sum$coefficients[11:12][1]
[1] 0.003124256
> sum$coefficients[11:12][2]
[1] 4.717107e-18

posted on 2018-05-09 09:38  小林觉  阅读(2134)  评论(0编辑  收藏  举报

导航