机器学习之线性分类器(机器学习算法原理与实践)郑捷 (P166-p168)
# -*- coding: utf-8 -*-
import os
import sys
import numpy as np
import operator
from numpy import *
from common_libs import *
import matplotlib.pyplot as plt
def hardlim(dataSet):
dataSet[nonzero(dataSet.A>0)[0]]=1
dataSet[nonzero(dataSet.A<=0)[0]]=0
return dataSet
# 输入数据
Input = file2matrix("testSet.txt","\t")
print(Input)
print('-------')
target = Input[:,-1] #获取分类标签列表
[m,n] = shape(Input)
# 按分类绘制散点图
drawScatterbyLabel(plt,Input)
# 构建x+b 系数矩阵:b这里默认为1
dataMat = buildMat(Input)
print dataMat
alpha = 0.001 # 步长
steps = 500 # 迭代次数
weights = ones((n,1))# 初始化权重向量
# 主程序
for k in xrange(steps):
gradient = dataMat*mat(weights) # 梯度
output = hardlim(gradient) # 硬限幅函数
errors = target-output # 计算误差
weights = weights + alpha*dataMat.T*errors
print weights # 输出权重
X = np.linspace(-5,5,10)
#y=w*x+b: b:weights[0]/weights[2]; w:weights[1]/weights[2]
Y = -(double(weights[0])+X*(double(weights[1])))/double(weights[2])
plt.plot(X,Y)
plt.show()
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步