使用opencv自带的融合函数

[wiki,blog]使用opencv自带的融合函数

[wiki,blog]使用opencv自带的融合函数
/*M///
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "stdafx.h"
#include "test_precomp.hpp"
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
 
using namespace cv;
using namespace std;
 
int main()
{
    Mat image1 = imread( "c:\\3.jpg" );
    Mat image2 = imread( "c:\\4.jpg" );
    ASSERT_EQ(image1.rows, image2.rows); ASSERT_EQ(image1.cols, image2.cols);
 
    Mat image1s, image2s;
    image1.convertTo(image1s, CV_16S);
    image2.convertTo(image2s, CV_16S);
 
    Mat mask1(image1s.size(), CV_8U);
   /* mask1(Rect(0, 0, mask1.cols/2, mask1.rows)).setTo(255);
    mask1(Rect(mask1.cols/2, 0, mask1.cols - mask1.cols/2, mask1.rows)).setTo(0);*/
                mask1(Rect(0,0, mask1.cols , mask1.rows)).setTo(0);
                mask1(Rect(0, 0, mask1.cols, mask1.rows/2)).setTo(255);
                
 
    Mat mask2(image2s.size(), CV_8U);
   /* mask2(Rect(0, 0, mask2.cols/2, mask2.rows)).setTo(0);
    mask2(Rect(mask2.cols/2, 0, mask2.cols - mask2.cols/2, mask2.rows)).setTo(255);*/
                mask2(Rect(0,0, mask2.cols , mask2.rows)).setTo(255);
                mask2(Rect(0, 0, mask2.cols, mask2.rows/2)).setTo(0);
 
 
    detail::MultiBandBlender blender( false , 5);
 
    blender.prepare(Rect(0, 0, max(image1s.cols, image2s.cols), max(image1s.rows, image2s.rows)));
    blender.feed(image1s, mask1, Point(0,0));
    blender.feed(image2s, mask2, Point(0,0));
 
    Mat result_s, result_mask;
    blender.blend(result_s, result_mask);
    Mat result; result_s.convertTo(result, CV_8U);
 
                cv::imshow( "result" ,result);
                cv::imwrite( "baboon_lena.jpg" ,result);
                cv::waitKey();
 
}
实现了速度很快,效果很好的mulitband的结果,但是对于实际的项目也是有不足的,就是只能输入两幅图像。如果需要用于实际的项目,就需要进行修正,使得其能够一下子用于许多图像。
  





posted on   jsxyhelu  阅读(37)  评论(0编辑  收藏  举报

相关博文:
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示