自己动手,编写神经网络程序,解决Mnist问题,并网络化部署-运行例子
1、联通ColaB
2、运行最基础mnist例子,并且打印图表结果
# https://pypi.python.org/pypi/pydot
#!apt-get -qq install -y graphviz && pip install -q pydot
#import pydot
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
from keras.utils import plot_model
import matplotlib.pyplot as plt
batch_size = 128
num_classes = 10
epochs = 12
#epochs = 2
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first' :
x_train = x_train.reshape(x_train.shape[ 0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[ 0], 1, img_rows, img_cols)
input_shape = ( 1, img_rows, img_cols)
else :
x_train = x_train.reshape(x_train.shape[ 0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[ 0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype( 'float32')
x_test = x_test.astype( 'float32')
x_train /= 255
x_test /= 255
print( 'x_train shape:', x_train.shape)
print(x_train.shape[ 0], 'train samples')
print(x_test.shape[ 0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D( 32, kernel_size =( 3, 3),
activation = 'relu',
input_shape =input_shape))
model.add(Conv2D( 64, ( 3, 3), activation = 'relu'))
model.add(MaxPooling2D(pool_size =( 2, 2)))
model.add(Dropout( 0. 25))
model.add(Flatten())
model.add(Dense( 128, activation = 'relu'))
model.add(Dropout( 0. 5))
model.add(Dense(num_classes, activation = 'softmax'))
model. compile(loss =keras.losses.categorical_crossentropy,
optimizer =keras.optimizers.Adadelta(),
metrics =[ 'accuracy'])
#log = model.fit(X_train, Y_train,
# batch_size=batch_size, nb_epoch=num_epochs,
# verbose=1, validation_split=0.1)
log = model.fit(x_train, y_train,
batch_size =batch_size,
epochs =epochs,
verbose = 1,
validation_data =(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose = 0)
print( 'Test loss:', score[ 0])
print( 'Test accuracy:', score[ 1])
plt.figure( 'acc')
plt.subplot( 2, 1, 1)
plt.plot(log.history[ 'acc'], 'r--',label = 'Training Accuracy')
plt.plot(log.history[ 'val_acc'], 'r-',label = 'Validation Accuracy')
plt.legend(loc = 'best')
plt.xlabel( 'Epochs')
plt.axis([ 0, epochs, 0. 9, 1])
plt.figure( 'loss')
plt.subplot( 2, 1, 2)
plt.plot(log.history[ 'loss'], 'b--',label = 'Training Loss')
plt.plot(log.history[ 'val_loss'], 'b-',label = 'Validation Loss')
plt.legend(loc = 'best')
plt.xlabel( 'Epochs')
plt.axis([ 0, epochs, 0, 1])
plt.show()
#!apt-get -qq install -y graphviz && pip install -q pydot
#import pydot
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
from keras.utils import plot_model
import matplotlib.pyplot as plt
batch_size = 128
num_classes = 10
epochs = 12
#epochs = 2
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first' :
x_train = x_train.reshape(x_train.shape[ 0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[ 0], 1, img_rows, img_cols)
input_shape = ( 1, img_rows, img_cols)
else :
x_train = x_train.reshape(x_train.shape[ 0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[ 0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype( 'float32')
x_test = x_test.astype( 'float32')
x_train /= 255
x_test /= 255
print( 'x_train shape:', x_train.shape)
print(x_train.shape[ 0], 'train samples')
print(x_test.shape[ 0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D( 32, kernel_size =( 3, 3),
activation = 'relu',
input_shape =input_shape))
model.add(Conv2D( 64, ( 3, 3), activation = 'relu'))
model.add(MaxPooling2D(pool_size =( 2, 2)))
model.add(Dropout( 0. 25))
model.add(Flatten())
model.add(Dense( 128, activation = 'relu'))
model.add(Dropout( 0. 5))
model.add(Dense(num_classes, activation = 'softmax'))
model. compile(loss =keras.losses.categorical_crossentropy,
optimizer =keras.optimizers.Adadelta(),
metrics =[ 'accuracy'])
#log = model.fit(X_train, Y_train,
# batch_size=batch_size, nb_epoch=num_epochs,
# verbose=1, validation_split=0.1)
log = model.fit(x_train, y_train,
batch_size =batch_size,
epochs =epochs,
verbose = 1,
validation_data =(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose = 0)
print( 'Test loss:', score[ 0])
print( 'Test accuracy:', score[ 1])
plt.figure( 'acc')
plt.subplot( 2, 1, 1)
plt.plot(log.history[ 'acc'], 'r--',label = 'Training Accuracy')
plt.plot(log.history[ 'val_acc'], 'r-',label = 'Validation Accuracy')
plt.legend(loc = 'best')
plt.xlabel( 'Epochs')
plt.axis([ 0, epochs, 0. 9, 1])
plt.figure( 'loss')
plt.subplot( 2, 1, 2)
plt.plot(log.history[ 'loss'], 'b--',label = 'Training Loss')
plt.plot(log.history[ 'val_loss'], 'b-',label = 'Validation Loss')
plt.legend(loc = 'best')
plt.xlabel( 'Epochs')
plt.axis([ 0, epochs, 0, 1])
plt.show()


3、两句修改成fasion模式
# https://pypi.python.org/pypi/pydot
#!apt-get -qq install -y graphviz && pip install -q pydot
#import pydot
from __future__ import print_function
import keras
from keras.datasets import fashion_mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
from keras.utils import plot_model
import matplotlib.pyplot as plt
batch_size = 128
num_classes = 10
epochs = 12
#epochs = 2
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
if K.image_data_format() == 'channels_first' :
x_train = x_train.reshape(x_train.shape[ 0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[ 0], 1, img_rows, img_cols)
input_shape = ( 1, img_rows, img_cols)
else :
x_train = x_train.reshape(x_train.shape[ 0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[ 0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype( 'float32')
x_test = x_test.astype( 'float32')
x_train /= 255
x_test /= 255
print( 'x_train shape:', x_train.shape)
print(x_train.shape[ 0], 'train samples')
print(x_test.shape[ 0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D( 32, kernel_size =( 3, 3),
activation = 'relu',
input_shape =input_shape))
model.add(Conv2D( 64, ( 3, 3), activation = 'relu'))
model.add(MaxPooling2D(pool_size =( 2, 2)))
model.add(Dropout( 0. 25))
model.add(Flatten())
model.add(Dense( 128, activation = 'relu'))
model.add(Dropout( 0. 5))
model.add(Dense(num_classes, activation = 'softmax'))
model. compile(loss =keras.losses.categorical_crossentropy,
optimizer =keras.optimizers.Adadelta(),
metrics =[ 'accuracy'])
#log = model.fit(X_train, Y_train,
# batch_size=batch_size, nb_epoch=num_epochs,
# verbose=1, validation_split=0.1)
log = model.fit(x_train, y_train,
batch_size =batch_size,
epochs =epochs,
verbose = 1,
validation_data =(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose = 0)
print( 'Test loss:', score[ 0])
print( 'Test accuracy:', score[ 1])
plt.figure( 'acc')
plt.subplot( 2, 1, 1)
plt.plot(log.history[ 'acc'], 'r--',label = 'Training Accuracy')
plt.plot(log.history[ 'val_acc'], 'r-',label = 'Validation Accuracy')
plt.legend(loc = 'best')
plt.xlabel( 'Epochs')
plt.axis([ 0, epochs, 0. 9, 1])
plt.figure( 'loss')
plt.subplot( 2, 1, 2)
plt.plot(log.history[ 'loss'], 'b--',label = 'Training Loss')
plt.plot(log.history[ 'val_loss'], 'b-',label = 'Validation Loss')
plt.legend(loc = 'best')
plt.xlabel( 'Epochs')
plt.axis([ 0, epochs, 0, 1])
plt.show()
#!apt-get -qq install -y graphviz && pip install -q pydot
#import pydot
from __future__ import print_function
import keras
from keras.datasets import fashion_mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
from keras.utils import plot_model
import matplotlib.pyplot as plt
batch_size = 128
num_classes = 10
epochs = 12
#epochs = 2
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
if K.image_data_format() == 'channels_first' :
x_train = x_train.reshape(x_train.shape[ 0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[ 0], 1, img_rows, img_cols)
input_shape = ( 1, img_rows, img_cols)
else :
x_train = x_train.reshape(x_train.shape[ 0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[ 0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype( 'float32')
x_test = x_test.astype( 'float32')
x_train /= 255
x_test /= 255
print( 'x_train shape:', x_train.shape)
print(x_train.shape[ 0], 'train samples')
print(x_test.shape[ 0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D( 32, kernel_size =( 3, 3),
activation = 'relu',
input_shape =input_shape))
model.add(Conv2D( 64, ( 3, 3), activation = 'relu'))
model.add(MaxPooling2D(pool_size =( 2, 2)))
model.add(Dropout( 0. 25))
model.add(Flatten())
model.add(Dense( 128, activation = 'relu'))
model.add(Dropout( 0. 5))
model.add(Dense(num_classes, activation = 'softmax'))
model. compile(loss =keras.losses.categorical_crossentropy,
optimizer =keras.optimizers.Adadelta(),
metrics =[ 'accuracy'])
#log = model.fit(X_train, Y_train,
# batch_size=batch_size, nb_epoch=num_epochs,
# verbose=1, validation_split=0.1)
log = model.fit(x_train, y_train,
batch_size =batch_size,
epochs =epochs,
verbose = 1,
validation_data =(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose = 0)
print( 'Test loss:', score[ 0])
print( 'Test accuracy:', score[ 1])
plt.figure( 'acc')
plt.subplot( 2, 1, 1)
plt.plot(log.history[ 'acc'], 'r--',label = 'Training Accuracy')
plt.plot(log.history[ 'val_acc'], 'r-',label = 'Validation Accuracy')
plt.legend(loc = 'best')
plt.xlabel( 'Epochs')
plt.axis([ 0, epochs, 0. 9, 1])
plt.figure( 'loss')
plt.subplot( 2, 1, 2)
plt.plot(log.history[ 'loss'], 'b--',label = 'Training Loss')
plt.plot(log.history[ 'val_loss'], 'b-',label = 'Validation Loss')
plt.legend(loc = 'best')
plt.xlabel( 'Epochs')
plt.axis([ 0, epochs, 0, 1])
plt.show()


4、VGG16&Mnist
5、VGG16迁移学习
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY