AnswerOpenCV学习_Opencv multiple circle detection in a image

题目:Opencv multiple circle detection in a image
原图如上,目标是从这副图片中寻找“细胞”区域。
难点分析:现实采集的图像,质量还是存在一定问题。边界部分可能有所干扰。
参考代码:
    const cv::Mat in = cv::imread("e:/template/findcircle.jpg");
    cv::Mat src;
    cv::dilate(in, src, cv::Mat(), cv::Point(-1, -1), 2);
    cv::erode(src, src, cv::Mat(), cv::Point(-1, -1), 2);
    cv::Mat hsv;
    cv::cvtColor(src, hsv, cv::COLOR_BGR2HSV);
    std::vector<cv::Mat> split_s;
    cv::split(hsv, split_s);
    split_s[1] = split_s[1] > 70;
    cv::dilate(split_s[1], split_s[1], cv::Mat());
    std::vector<std::vector<cv::Point> > contours;
    findContours(split_s[1], contours, cv::RETR_TREE, cv::CHAIN_APPROX_SIMPLE);
    for (size_t i = 0; i < contours.size(); i++)
    {
        cv::Rect r = cv::boundingRect(contours[i]);
        cv::Mat resized;
        cv::resize(in(r), resized, cv::Size(5, 5), 0, 0);
        cv::Scalar mean_s = cv::mean(resized);
        if ((mean_s[0] > 120) & (mean_s[0] < 200))
        {
            cv::drawContours(in, contours, i, cv::Scalar(0, 255, 0), 1);
            cv::rectangle(in, r, cv::Scalar(0, 0, 255), 1);
        }
    }
    cv::imshow("result", in);
处理结果:
非常好,完全找到了所有目标。
代码分析:
1、彩色图像直接进行形态学变换,这个是我之前见的比较少的;
dilateerode
其中,形态学的参数(步长 interation)起到一定作用。但是这个参数对于结果的贡献是不稳定的。
2、代码的书写细节有多处值得学习:
   const   cv :: Mat  in 在获取图片的时候,使用const,本例证明即使原图像标注为const也是可以绘制的;
   std :: vector < cv :: Mat >  split_s ;这个命名值得学习;
split_s [1] =  split_s [1] > 70;过滤掉“浑浊区域”效果良好
beforeafter
3、值得改进的地方
主要算法不稳定,仅使用了轮廓的”面积特征“,尝试findblob进行进一步的分析研究。
    const cv::Mat in = cv::imread("e:/template/findcircle.jpg");
    cv::Mat src;
    cv::dilate(in, src, cv::Mat());
    cv::erode(src, src, cv::Mat());
    cv::Mat hsv;
    cv::cvtColor(src, hsv, cv::COLOR_BGR2HSV);
    std::vector<cv::Mat> split_s;
    cv::split(hsv, split_s);
    split_s[1] = split_s[1] > 70;
    SimpleBlobDetector::Params params;
    params.filterByColor = false;
    params.minThreshold = 120;
    vector<KeyPoint> keypoints;
    Ptr<SimpleBlobDetector> detector = SimpleBlobDetector::create(params);
    detector->detect(split_s[1], keypoints);
    drawKeypoints(in, keypoints, in, Scalar(0, 0, 255), DrawMatchesFlags::DRAW_RICH_KEYPOINTS);

改变的地方还包括取消了基础形态学变换的参数,或者直接取消形态学变化。

比较这两种算法,都无法正确处理“粘连”区域。但是我认为findblob方法使用了更少参数,因此更稳定,我更倾向于使用这种方法。下一步如果需要继续研究,首先必须制作数据集并进行针对性实验。
原方法错误识别“粘连”区域findblob没有识别“粘连”区域




posted on   jsxyhelu  阅读(13)  评论(0编辑  收藏  举报

相关博文:
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 如何调用 DeepSeek 的自然语言处理 API 接口并集成到在线客服系统
· 【译】Visual Studio 中新的强大生产力特性
· 2025年我用 Compose 写了一个 Todo App

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示