《Java数据结构》红黑树(RBTree)
前言
在学习JDK8的HashMap的时候遇到了红黑树,由于之前没有遇到过红黑树,所以借这个机会好好了解一下红黑树。
原理
先看一下红黑树的定义:
1.每个结点或是红的,或是黑的
2.根节点是黑的
3.每个叶结点是黑的
4.如果一个结点是红的,则它的两个儿子都是黑的
5.对每个结点,从该结点到其任何叶子节点的所有路径上包含相同数目的黑结点
上图就是一颗红黑树,那为什么需要红黑树?
这个需要说另外一种数据结果:平衡二叉树
查询效率对比:平衡二叉树略好。
插入,删除效率对比:红黑树效率高。这也是红黑树产生的原因。(感叹创造红黑树数据结构的人,真的牛!)
代码
public class RBTree<T extends Comparable<T>> { private RBTNode<T> mRoot; // 根结点 private static final boolean RED = false; private static final boolean BLACK = true; public class RBTNode<T extends Comparable<T>> { boolean color; // 颜色 T key; // 关键字(键值) RBTNode<T> left; // 左孩子 RBTNode<T> right; // 右孩子 RBTNode<T> parent; // 父结点 public RBTNode(T key, boolean color, RBTNode<T> parent, RBTNode<T> left, RBTNode<T> right) { this.key = key; this.color = color; this.parent = parent; this.left = left; this.right = right; } public T getKey() { return key; } public String toString() { return ""+key+(this.color==RED?"(R)":"B"); } } public RBTree() { mRoot=null; } private RBTNode<T> parentOf(RBTNode<T> node) { return node!=null ? node.parent : null; } private boolean colorOf(RBTNode<T> node) { return node!=null ? node.color : BLACK; } private boolean isRed(RBTNode<T> node) { return ((node!=null)&&(node.color==RED)) ? true : false; } private boolean isBlack(RBTNode<T> node) { return !isRed(node); } private void setBlack(RBTNode<T> node) { if (node!=null) node.color = BLACK; } private void setRed(RBTNode<T> node) { if (node!=null) node.color = RED; } private void setParent(RBTNode<T> node, RBTNode<T> parent) { if (node!=null) node.parent = parent; } private void setColor(RBTNode<T> node, boolean color) { if (node!=null) node.color = color; } /** * (递归实现)查找"红黑树x"中键值为key的节点 */ private RBTNode<T> search(RBTNode<T> x, T key) { if (x==null) return x; int cmp = key.compareTo(x.key); if (cmp < 0) return search(x.left, key); else if (cmp > 0) return search(x.right, key); else return x; } public RBTNode<T> search(T key) { return search(mRoot, key); } /** * (非递归实现)查找"红黑树x"中键值为key的节点 */ private RBTNode<T> iterativeSearch(RBTNode<T> x, T key) { while (x!=null) { int cmp = key.compareTo(x.key); if (cmp < 0) x = x.left; else if (cmp > 0) x = x.right; else return x; } return x; } public RBTNode<T> iterativeSearch(T key) { return iterativeSearch(mRoot, key); } /** * 查找最小结点:返回tree为根结点的红黑树的最小结点。 */ private RBTNode<T> minimum(RBTNode<T> tree) { if (tree == null) return null; while(tree.left != null) tree = tree.left; return tree; } public T minimum() { RBTNode<T> p = minimum(mRoot); if (p != null) return p.key; return null; } /** * 查找最大结点:返回tree为根结点的红黑树的最大结点。 */ private RBTNode<T> maximum(RBTNode<T> tree) { if (tree == null) return null; while(tree.right != null) tree = tree.right; return tree; } public T maximum() { RBTNode<T> p = maximum(mRoot); if (p != null) return p.key; return null; } /** * 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。 */ public RBTNode<T> successor(RBTNode<T> x) { // 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。 if (x.right != null) return minimum(x.right); // 如果x没有右孩子。则x有以下两种可能: // (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。 // (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。 RBTNode<T> y = x.parent; while ((y!=null) && (x==y.right)) { x = y; y = y.parent; } return y; } /** * 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。 */ public RBTNode<T> predecessor(RBTNode<T> x) { // 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。 if (x.left != null) return maximum(x.left); // 如果x没有左孩子。则x有以下两种可能: // (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。 // (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。 RBTNode<T> y = x.parent; while ((y!=null) && (x==y.left)) { x = y; y = y.parent; } return y; } /** * 对红黑树的节点(x)进行左旋转 * 左旋示意图(对节点x进行左旋): * px px * / / * x y * / \ --(左旋)-. / \ # * lx y x ry * / \ / \ * ly ry lx ly * * */ private void leftRotate(RBTNode<T> x) { // 设置x的右孩子为y RBTNode<T> y = x.right; // 将 “y的左孩子” 设为 “x的右孩子”; // 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲” x.right = y.left; if (y.left != null) y.left.parent = x; // 将 “x的父亲” 设为 “y的父亲” y.parent = x.parent; if (x.parent == null) { this.mRoot = y; // 如果 “x的父亲” 是空节点,则将y设为根节点 } else { if (x.parent.left == x) x.parent.left = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子” else x.parent.right = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子” } // 将 “x” 设为 “y的左孩子” y.left = x; // 将 “x的父节点” 设为 “y” x.parent = y; } /** * 对红黑树的节点(y)进行右旋转 * 右旋示意图(对节点y进行左旋): * py py * / / * y x * / \ --(右旋)-. / \ # * x ry lx y * / \ / \ # * lx rx rx ry * */ private void rightRotate(RBTNode<T> y) { // 设置x是当前节点的左孩子。 RBTNode<T> x = y.left; // 将 “x的右孩子” 设为 “y的左孩子”; // 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲” y.left = x.right; if (x.right != null) x.right.parent = y; // 将 “y的父亲” 设为 “x的父亲” x.parent = y.parent; if (y.parent == null) { this.mRoot = x; // 如果 “y的父亲” 是空节点,则将x设为根节点 } else { if (y == y.parent.right) y.parent.right = x; // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子” else y.parent.left = x; // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子” } // 将 “y” 设为 “x的右孩子” x.right = y; // 将 “y的父节点” 设为 “x” y.parent = x; } /** * 红黑树插入修正函数 * 在向红黑树中插入节点之后(失去平衡),再调用该函数; * 目的是将它重新塑造成一颗红黑树。 * 参数说明: * node 插入的结点 // 对应《算法导论》中的z */ private void insertFixUp(RBTNode<T> node) { RBTNode<T> parent, gparent; // 若“父节点存在,并且父节点的颜色是红色” while (((parent = parentOf(node))!=null) && isRed(parent)) { gparent = parentOf(parent); //若“父节点”是“祖父节点的左孩子” if (parent == gparent.left) { // Case 1条件:叔叔节点是红色 RBTNode<T> uncle = gparent.right; if ((uncle!=null) && isRed(uncle)) { setBlack(uncle); setBlack(parent); setRed(gparent); node = gparent; continue; } // Case 2条件:叔叔是黑色,且当前节点是右孩子 if (parent.right == node) { RBTNode<T> tmp; leftRotate(parent); tmp = parent; parent = node; node = tmp; } // Case 3条件:叔叔是黑色,且当前节点是左孩子。 setBlack(parent); setRed(gparent); rightRotate(gparent); } else { //若“z的父节点”是“z的祖父节点的右孩子” // Case 1条件:叔叔节点是红色 RBTNode<T> uncle = gparent.left; if ((uncle!=null) && isRed(uncle)) { setBlack(uncle); setBlack(parent); setRed(gparent); node = gparent; continue; } // Case 2条件:叔叔是黑色,且当前节点是左孩子 if (parent.left == node) { RBTNode<T> tmp; rightRotate(parent); tmp = parent; parent = node; node = tmp; } // Case 3条件:叔叔是黑色,且当前节点是右孩子。 setBlack(parent); setRed(gparent); leftRotate(gparent); } } // 将根节点设为黑色 setBlack(this.mRoot); } /* * 将结点插入到红黑树中 * * 参数说明: * node 插入的结点 // 对应《算法导论》中的node */ private void insert(RBTNode<T> node) { int cmp; RBTNode<T> y = null; RBTNode<T> x = this.mRoot; // 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。 while (x != null) { y = x; cmp = node.key.compareTo(x.key); if (cmp < 0) x = x.left; else x = x.right; } node.parent = y; if (y!=null) { cmp = node.key.compareTo(y.key); if (cmp < 0) y.left = node; else y.right = node; } else { this.mRoot = node; } // 2. 设置节点的颜色为红色 node.color = RED; // 3. 将它重新修正为一颗二叉查找树 insertFixUp(node); } /** * 新建结点(key),并将其插入到红黑树中 * 参数说明: * key 插入结点的键值 */ public void insert(T key) { RBTNode<T> node=new RBTNode<T>(key,BLACK,null,null,null); // 如果新建结点失败,则返回。 if (node != null) insert(node); } /** * 红黑树删除修正函数 * 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数; * 目的是将它重新塑造成一颗红黑树。 * 参数说明: * node 待修正的节点 */ private void removeFixUp(RBTNode<T> node, RBTNode<T> parent) { RBTNode<T> other; while ((node==null || isBlack(node)) && (node != this.mRoot)) { if (parent.left == node) { other = parent.right; if (isRed(other)) { // Case 1: x的兄弟w是红色的 setBlack(other); setRed(parent); leftRotate(parent); other = parent.right; } if ((other.left==null || isBlack(other.left)) && (other.right==null || isBlack(other.right))) { // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的 setRed(other); node = parent; parent = parentOf(node); } else { if (other.right==null || isBlack(other.right)) { // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。 setBlack(other.left); setRed(other); rightRotate(other); other = parent.right; } // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。 setColor(other, colorOf(parent)); setBlack(parent); setBlack(other.right); leftRotate(parent); node = this.mRoot; break; } } else { other = parent.left; if (isRed(other)) { // Case 1: x的兄弟w是红色的 setBlack(other); setRed(parent); rightRotate(parent); other = parent.left; } if ((other.left==null || isBlack(other.left)) && (other.right==null || isBlack(other.right))) { // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的 setRed(other); node = parent; parent = parentOf(node); } else { if (other.left==null || isBlack(other.left)) { // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。 setBlack(other.right); setRed(other); leftRotate(other); other = parent.left; } // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。 setColor(other, colorOf(parent)); setBlack(parent); setBlack(other.left); rightRotate(parent); node = this.mRoot; break; } } } if (node!=null) setBlack(node); } /** * 删除结点(node),并返回被删除的结点 * 参数说明: * node 删除的结点 */ private void remove(RBTNode<T> node) { RBTNode<T> child, parent; boolean color; // 被删除节点的"左右孩子都不为空"的情况。 if ( (node.left!=null) && (node.right!=null) ) { // 被删节点的后继节点。(称为"取代节点") // 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。 RBTNode<T> replace = node; // 获取后继节点 replace = replace.right; while (replace.left != null) replace = replace.left; // "node节点"不是根节点(只有根节点不存在父节点) if (parentOf(node)!=null) { if (parentOf(node).left == node) parentOf(node).left = replace; else parentOf(node).right = replace; } else { // "node节点"是根节点,更新根节点。 this.mRoot = replace; } // child是"取代节点"的右孩子,也是需要"调整的节点"。 // "取代节点"肯定不存在左孩子!因为它是一个后继节点。 child = replace.right; parent = parentOf(replace); // 保存"取代节点"的颜色 color = colorOf(replace); // "被删除节点"是"它的后继节点的父节点" if (parent == node) { parent = replace; } else { // child不为空 if (child!=null) setParent(child, parent); parent.left = child; replace.right = node.right; setParent(node.right, replace); } replace.parent = node.parent; replace.color = node.color; replace.left = node.left; node.left.parent = replace; if (color == BLACK) removeFixUp(child, parent); node = null; return ; } if (node.left !=null) { child = node.left; } else { child = node.right; } parent = node.parent; // 保存"取代节点"的颜色 color = node.color; if (child!=null) child.parent = parent; // "node节点"不是根节点 if (parent!=null) { if (parent.left == node) parent.left = child; else parent.right = child; } else { this.mRoot = child; } if (color == BLACK) removeFixUp(child, parent); node = null; } /** * 删除结点(z),并返回被删除的结点 * 参数说明: * tree 红黑树的根结点 * z 删除的结点 */ public void remove(T key) { RBTNode<T> node; if ((node = search(mRoot, key)) != null) remove(node); } /** * 销毁红黑树 */ private void destroy(RBTNode<T> tree) { if (tree==null) return ; if (tree.left != null) destroy(tree.left); if (tree.right != null) destroy(tree.right); tree=null; } public void clear() { destroy(mRoot); mRoot = null; } /** * 打印"红黑树" * key -- 节点的键值 * direction -- 0,表示该节点是根节点; * -1,表示该节点是它的父结点的左孩子; * 1,表示该节点是它的父结点的右孩子。 */ private void print(RBTNode<T> tree, T key, int direction) { if(tree != null) { if(direction==0) // tree是根节点 System.out.printf("%2d(B) is root\n", tree.key); else // tree是分支节点 System.out.printf("%2d(%s) is %2d's %6s child\n", tree.key, isRed(tree)?"R":"B", key, direction==1?"right" : "left"); print(tree.left, tree.key, -1); print(tree.right,tree.key, 1); } } public void print() { if (mRoot != null) print(mRoot, mRoot.key, 0); } }
public class RBTreeTest { private static final int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80}; private static final boolean mDebugInsert = false; // "插入"动作的检测开关(false,关闭;true,打开) private static final boolean mDebugDelete = false; // "删除"动作的检测开关(false,关闭;true,打开) public static void main(String[] args) { int i, iLen = a.length; RBTree<Integer> tree=new RBTree<Integer>(); System.out.printf("插入红黑树节点: "); for(i=0; i<iLen; i++){ System.out.printf("%d ", a[i]); tree.insert(a[i]); // 设置mDebugInsert=true,测试"添加函数" if (mDebugInsert) { System.out.printf("== 添加节点: %d\n", a[i]); System.out.printf("== 树的详细信息: \n"); tree.print(); System.out.printf("\n"); } } System.out.printf("\n"); System.out.printf("树的详细信息: \n"); tree.print(); System.out.printf("\n"); // 设置mDebugDelete=true,测试"删除函数" if (mDebugDelete) { for(i=0; i<iLen; i++){ tree.remove(a[i]); System.out.printf("== 删除节点: %d\n", a[i]); System.out.printf("== 树的详细信息: \n"); tree.print(); System.out.printf("\n"); } } // 销毁二叉树 tree.clear(); } }
运行结果:
总结
红黑树的重要作用就是为了查询速度保持的情况下插入提速。在linux, Java HashMap 等地方被使用。
This moment will nap, you will have a dream; But this moment study,you will interpret a dream.