Apscheduler 使用Redis集群做为任务存储
背景#
由于原生的apscheduler仅支持redis单节点连接,不支持redis集群,所以本人基于原生的
RedisJobStore
自己修改了一个专门用于连接redis集群的类RedisClusterJobStore
修改点有以下内容:
- 修改类名
RedisJobStore
为RedisClusterJobStore
- 将原始导入的
redis
替换为rediscluster
- 将原始代码中的
pipe.multi()
注释掉,此处注释掉是否会有其他的影响暂未测试
文件#
# encoding:utf8 from __future__ import absolute_import from datetime import datetime from pytz import utc import six from apscheduler.jobstores.base import BaseJobStore, JobLookupError, ConflictingIdError from apscheduler.util import datetime_to_utc_timestamp, utc_timestamp_to_datetime from apscheduler.job import Job try: import cPickle as pickle except ImportError: # pragma: nocover import pickle try: # from redis import Redis from rediscluster import RedisCluster # 将原本的redis库替换为rediscluster except ImportError: # pragma: nocover raise ImportError('RedisJobStore requires redis installed') class RedisClusterJobStore(BaseJobStore): """ Stores jobs in a Redis database. Any leftover keyword arguments are directly passed to redis's :class:`~redis.StrictRedis`. Plugin alias: ``redis`` :param int db: the database number to store jobs in :param str jobs_key: key to store jobs in :param str run_times_key: key to store the jobs' run times in :param int pickle_protocol: pickle protocol level to use (for serialization), defaults to the highest available """ def __init__(self, db=0, jobs_key='apscheduler.jobs', run_times_key='apscheduler.run_times', pickle_protocol=pickle.HIGHEST_PROTOCOL, **connect_args): super(RedisClusterJobStore, self).__init__() if db is None: raise ValueError('The "db" parameter must not be empty') if not jobs_key: raise ValueError('The "jobs_key" parameter must not be empty') if not run_times_key: raise ValueError('The "run_times_key" parameter must not be empty') self.pickle_protocol = pickle_protocol self.jobs_key = jobs_key self.run_times_key = run_times_key # self.redis = Redis(db=int(db), **connect_args) self.redis = RedisCluster(**connect_args) def lookup_job(self, job_id): job_state = self.redis.hget(self.jobs_key, job_id) return self._reconstitute_job(job_state) if job_state else None def get_due_jobs(self, now): timestamp = datetime_to_utc_timestamp(now) job_ids = self.redis.zrangebyscore(self.run_times_key, 0, timestamp) if job_ids: job_states = self.redis.hmget(self.jobs_key, *job_ids) return self._reconstitute_jobs(six.moves.zip(job_ids, job_states)) return [] def get_next_run_time(self): next_run_time = self.redis.zrange(self.run_times_key, 0, 0, withscores=True) if next_run_time: return utc_timestamp_to_datetime(next_run_time[0][1]) def get_all_jobs(self): job_states = self.redis.hgetall(self.jobs_key) jobs = self._reconstitute_jobs(six.iteritems(job_states)) paused_sort_key = datetime(9999, 12, 31, tzinfo=utc) return sorted(jobs, key=lambda job: job.next_run_time or paused_sort_key) def add_job(self, job): if self.redis.hexists(self.jobs_key, job.id): raise ConflictingIdError(job.id) with self.redis.pipeline() as pipe: # pipe.multi() pipe.hset(self.jobs_key, job.id, pickle.dumps(job.__getstate__(), self.pickle_protocol)) if job.next_run_time: pipe.zadd(self.run_times_key, {job.id: datetime_to_utc_timestamp(job.next_run_time)}) pipe.execute() def update_job(self, job): if not self.redis.hexists(self.jobs_key, job.id): raise JobLookupError(job.id) with self.redis.pipeline() as pipe: pipe.hset(self.jobs_key, job.id, pickle.dumps(job.__getstate__(), self.pickle_protocol)) if job.next_run_time: pipe.zadd(self.run_times_key, {job.id: datetime_to_utc_timestamp(job.next_run_time)}) else: pipe.zrem(self.run_times_key, job.id) pipe.execute() def remove_job(self, job_id): if not self.redis.hexists(self.jobs_key, job_id): raise JobLookupError(job_id) with self.redis.pipeline() as pipe: pipe.hdel(self.jobs_key, job_id) pipe.zrem(self.run_times_key, job_id) pipe.execute() def remove_all_jobs(self): with self.redis.pipeline() as pipe: pipe.delete(self.jobs_key) pipe.delete(self.run_times_key) pipe.execute() def shutdown(self): self.redis.connection_pool.disconnect() def _reconstitute_job(self, job_state): job_state = pickle.loads(job_state) job = Job.__new__(Job) job.__setstate__(job_state) job._scheduler = self._scheduler job._jobstore_alias = self._alias return job def _reconstitute_jobs(self, job_states): jobs = [] failed_job_ids = [] for job_id, job_state in job_states: try: jobs.append(self._reconstitute_job(job_state)) except BaseException: self._logger.exception('Unable to restore job "%s" -- removing it', job_id) failed_job_ids.append(job_id) # Remove all the jobs we failed to restore if failed_job_ids: with self.redis.pipeline() as pipe: pipe.hdel(self.jobs_key, *failed_job_ids) pipe.zrem(self.run_times_key, *failed_job_ids) pipe.execute() return jobs def __repr__(self): return '<%s>' % self.__class__.__name__
如何使用#
from aaa import RedisClusterJobStore # 配置 Redis集群 作为 JobStore jobstore = { 'default': RedisClusterJobStore(startup_nodes=[{"host": "127.0.0.1", "port": 7000}],passoword="test1234") } executors={ 'default': ThreadPoolExecutor() } scheduler = BackgroundScheduler(jobstores=jobstore, executors=executors) # 定义一个任务 def job_function(): print("Hello World!") # 添加任务到调度器 scheduler.add_job(job_function, 'interval', seconds=5) scheduler.start()
本文来自博客园,作者:Jruing,转载请注明原文链接:https://www.cnblogs.com/jruing/p/18039022
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
2023-02-28 Prometheus笔记-设置Basic_auth登录校验