[LeetCode] #5 最长回文子串

给你一个字符串 s,找到 s 中最长的回文子串。

输入:s = "babad"

输出:"bab"

解释:"aba" 同样是符合题意的答案。

暴力法(超时)

class Solution {
    public String longestPalindrome(String s) {
        String res = "";
        int max = 0;
        for (int i = 0; i < s.length(); i++)
            for (int j = i + 1; j <= s.length(); j++) {
                String t = s.substring(i, j);
                if (isPalindromic(t) && t.length() > max) {
                    res = s.substring(i, j);
                    max = Math.max(max, res.length());
                }
            }
        return res;
    }
    public boolean isPalindromic(String s) {
        for (int i = 0; i < s.length() / 2; i++) 
            if (s.charAt(i) != s.charAt(s.length() - i - 1)) return false;
        return true;
    }
}

动态规划

dp[i][j] 表示 s[i..j] 是否是回文串

状态转移方程:dp[i][j] = dp[i + 1][j - 1]

public class Solution {
    public String longestPalindrome(String s) {
        int len = s.length();
        if (len < 2) {
            return s;
        }

        int maxLen = 1;
        int begin = 0;
        boolean[][] dp = new boolean[len][len];
        for (int i = 0; i < len; i++) {
            dp[i][i] = true;
        }

        char[] charArray = s.toCharArray();
        for (int L = 2; L <= len; L++) {
            for (int i = 0; i < len; i++) {
                int j = L + i - 1;
                if (j >= len) {
                    break;
                }
                if (charArray[i] != charArray[j]) {
                    dp[i][j] = false;
                } else {
                    if (j - i < 3) {
                        dp[i][j] = true;
                    } else {
                        dp[i][j] = dp[i + 1][j - 1];
                    }
                }
                if (dp[i][j] && j - i + 1 > maxLen) {
                    maxLen = j - i + 1;
                    begin = i;
                }
            }
        }
        return s.substring(begin, begin + maxLen);
    }
}

中心扩展

从子串为1或2开始不断地向两边扩展。如果两边的字母相同,我们就可以继续扩展;如果两边的字母不同,我们就可以停止扩展,因为在这之后的子串都不能是回文串了。

class Solution {
    public String longestPalindrome(String s) {
        if (s == null || s.length() < 1) {
            return "";
        }
        int start = 0, end = 0;
        for (int i = 0; i < s.length(); i++) {
            int len1 = expandAroundCenter(s, i, i);
            int len2 = expandAroundCenter(s, i, i + 1);
            int len = Math.max(len1, len2);
            if (len > end - start) {
                start = i - (len - 1) / 2;
                end = i + len / 2;
            }
        }
        return s.substring(start, end + 1);
    }

    public int expandAroundCenter(String s, int left, int right) {
        while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
            --left;
            ++right;
        }
        return right - left - 1;
    }
}

知识点:

总结:

posted @ 2021-09-23 10:13  1243741754  阅读(30)  评论(0编辑  收藏  举报