树的递归与非递归遍历方法

关于二叉树的遍历在面试时是企业经常容易考到的题目,这里做一下总结。

各类二叉树遍历的概念

二叉树有前序遍历,中序遍历和后序遍历三种。关于这三种遍历,网上资料有很多,在此就不做详细介绍了。主要需要记住顺序:

  • 前序遍历 - 根->左->右
  • 中序遍历 - 左->根->右
  • 后序遍历 - 左->右->根

递归时仅需要按照上述顺序就可以了。

前序遍历递归:

复制代码
void preOrder(TreeNode* root) {
    if (!root) {
        return;
    }
    cout << root->val;
    preOrder(root->left);
    preOrder(root->right);
}
复制代码

中序遍历递归:

复制代码
void inOrder(TreeNode* root) {
    if (!root) {
        return;
    }
    inOrder(root->left);
    cout << root->val;
    inOrder(root->right);
}
复制代码

后序遍历递归:

复制代码
void postOrder(TreeNode* root) {
    if (!root) {
        return;
    }
    postOrder(root->left);
    postOrder(root->right);
    cout << root->val;
}
复制代码

非递归版本:

可见递归版本实现起来非常简单,面试的时候,往往面试官会强制你写出非递归的版本,网上关于非递归版本的介绍也有很多,这里我分享一个自己认为是比较好记的版本。

显然,我们需要用一个stack来模拟递归时的函数调用。对于三种遍历,我们都使用push当前节点->push左子树->pop左子树->push右子树->pop右子树的方式。但是cout时机会有所不同。

对于前序遍历来说,每次访问到一个节点就cout;

对于中序遍历来说,每次将右子节点进栈时,把当前节点cout;

对于后序遍历来说,每次pop的时候cout。

另外我们还需要一个last_pop指针来存放上一个pop出去的节点。

如果当前节点的左右节点都不是上一个pop的节点,那么我们将左子节点入栈;

如果当前节点的左节点是上一个pop的节点,但右节点不是,那么就把右子节点入栈;

否则的话,就需要让当前节点出栈。

大致思路就是这样,俗话说Talk is cheap, let's coding. 直接上代码,注意三种遍历的代码总体结构都是完全一样的,只是cout的时机有所不同。

前序遍历非递归:

复制代码
void preorder_traversal_iteratively(TreeNode* root)
{
    if (root == 0)
        return;
    stack<TreeNode*> s;
    s.push(root);
    cout << root->val << ' '; // visit root
    TreeNode* last_pop = root;
    while (!s.empty())
    {
        TreeNode* top = s.top();
        if (top->left != 0 && top->left != last_pop && top->right != last_pop) // push_left
        {
            s.push(top->left);
            cout << top->left->val << ' '; // visit top->left
        }
        else if (top->right != 0 && top->right != last_pop && (top->left == 0 || top->left == last_pop)) // push_right
        {
            s.push(top->right);
            cout << top->right->val << ' '; // visit top->right
        }
        else // pop
        {
            s.pop();
            last_pop = top;
        }
    }
}
复制代码

中序遍历非递归:

复制代码
void inorder_traversal_iteratively(TreeNode* root)
{
    if (root == 0)
        return;
    stack<TreeNode*> s;
    s.push(root);
    TreeNode* last_pop = root;
    while (!s.empty())
    {
        TreeNode* top = s.top();
        if (top->left != 0 && top->left != last_pop && top->right != last_pop) // push_left
        {
            s.push(top->left);
        }
        else if (top->right != 0 && top->right != last_pop && (top->left == 0 || top->left == last_pop)) // push_right
        {
            s.push(top->right);
            cout << top->val << ' '; // visit top
        }
        else // pop
        {
            s.pop();
            last_pop = top;
            if (top->right == 0)
                cout << top->val << ' '; // visit top
        }
    }
}
复制代码

后序遍历非递归:

复制代码
void postorder_traversal_iteratively(TreeNode* root)
{
    if (root == 0)
        return;
    stack<TreeNode*> s;
    s.push(root);   
    TreeNode* last_pop = root;
    while (!s.empty())
    {       
        TreeNode* top = s.top();
        if (top->left != 0 && top->left != last_pop && top->right != last_pop) // push_left
        {
            s.push(top->left);
        }
        else if (top->right != 0 && top->right != last_pop && (top->left == 0 || top->left == last_pop)) // push_right
        {
            s.push(top->right);
        }
        else // pop
        {
            s.pop();
            last_pop = top;
            cout << top->val << ' '; // visit top
        }
    }
}
复制代码

 

posted @ 2019-07-06 10:55  星朝  阅读(7862)  评论(0编辑  收藏  举报