cojs DAG计数问题1-4 题解报告

最近突然有很多人来问我这些题目怎么做OwO

然而并不是我出的,结论我也不是很懂

研究了一下觉得非常的一颗赛艇,于是就打算写这样一篇题解

 

DAG 1

我们考虑DAG的性质,枚举出度为0的点

设出度为0的点有k个,则一共有C(n,k)种方案

对于剩下的(n-k)个点和这k个点之间可以任意连边,方案为2^(k*(n-k))

去掉这k个点之后剩下(n-k)个点仍然是DAG,方案为f(n-k)

则方案数为C(n,k)*2^(k*(n-k))*f(n-k)

考虑到剩下的(n-k)个点中也可能有出度为0的点,即方案可能会有重复

考虑算重的部分,用容斥原理解决即可

最后得到f(n)=sigma((-1)^(k-1)*C(n,k)*2^(k*(n-k))*f(n-k))

这个递推式是O(n^2)的,可以通过DAG 1

 

DAG 2

不难想到要用FFT来优化上面的递推式

瓶颈在于2^(k*(n-k))的拆分

我们发现(n-k)^2=n^2+2nk+k^2

不难构造出k*(n-k)= n^2/2 - k^2/2 - (n-k)^2/2

代入之后得到卷积形式,直接做CDQ+FFT即可

定义g(n)=2^(n^2/2)*n!

注意到f(n)/g(n)=sigma( (-1)^(k-1)/g(k) * f(n-k)/g(n-k) )

定义多项式h,h(n)=(-1)^(n-1)/g(n)

定义多项式ans,ans(n)=f(n)/g(n)

变形之后得ans-ans*h=1

之后得到ans=1/(1-h)

多项式求逆即可

UPD:注意一下这里的实现,由于n^2/2有可能不是整数,而且(mod-1)和2不是互素的

但是因为在模意义下我们可以找到x^2=2(mod 998244353)

所以2^(n^2/2)=x^(n^2)

至于怎么求解x,因为可以预处理,所以直接枚举算出结果在代码里直接用就可以了

正常向的做法是用原根取对数之后BSGS搞一搞

 

DAG 3

设f(n)为n个点的DAG的个数(可以不连通)

设g(n)为n个点的连通DAG的个数

不难想到用f(n)减去不连通的就是连通的

计算不连通图常见技巧是枚举特定的某个点所在的联通块的大小

则得到g(n)=f(n)-sigma( C(n-1,k-1)*g(k)*f(n-k) )

这样我们就在O(n^2)的时间内求出来了

 

DAG 4

注意到上面的那个式子自然就是卷积形式

一发CDQ+FFT就可以了

但是我们可以做到更好

变形之后得到sigma( g(k)/(k-1)! *f(n-k)/(n-k)! ) = f(n)/(n-1)!

我们要求g,那么多项式求逆即可

我们注意到实际上不连通的DAG是由多个连通的DAG组成的

设可以不连通的DAG的多项式为f,连通DAG的多项式为g

不难得到f=e^g

那么g=ln(f)

多项式求ln即可

 

posted @ 2016-07-18 17:49  _Vertical  阅读(838)  评论(0编辑  收藏  举报