UR #13 Ernd

考试的时候没有注意到可以将(a,b)放在二维平面上之后旋转坐标系,使得转移变成树状数组二维偏序

这样就算我想出来了第二个转移的斜率优化也没有什么卵用啊(摔西瓜

设g(i)表示当前站在第i个水果下面且第i个水果此时并没有记分的最大得分

设f(i)表示当前站在第i个水果下面且第i个水果此时已经记分的最大得分

g(i)=max(f(j)) (满足j能到达i)

f(i)=max(g(j)+(i-j+1)^2)(满足从i出发可以一路接水果走到j)

首先考虑g(i)的转移,我们注意到j能到达i当且仅当

abs(ai-aj)<=bi-bj

又注意到bi>=bj

我们对绝对值进行分类讨论后可以得到j可以到达的i都在j的10点半钟方向到13点半钟方向

之后我们将坐标系旋转,即将每个点的坐标变为(bi+ai,bi-ai)

那么j能到达的i都在j的右上方啦,那么对于这个转移就变成了一个二维偏序问题

对于一维排序,另一维用树状数组维护即可,时间复杂度O(nlogn)

 

之后我们考虑f(i)的转移,我们很容易发现这是可以分段的

对于每个i不能到达i+1分一段,那么这个转移每一段都是相互独立的

我们又惊奇的发现在第一个转移排序后,每一段内的相对顺序是不变的

注意到这是一个很经典的可以用斜率优化的式子

化简完后f(i)=max(g(j)-2*j+j*j-2*i*j)+(i+1)^2

对于斜率2*i,我们用很容易发现这个斜率是递增的

我们可以对于每一段用单调栈维护一个上凸包,这样这个转移就是O(n)的了

 

  

posted @   _Vertical  阅读(296)  评论(0编辑  收藏  举报
编辑推荐:
· .NET Core内存结构体系(Windows环境)底层原理浅谈
· C# 深度学习:对抗生成网络(GAN)训练头像生成模型
· .NET 适配 HarmonyOS 进展
· .NET 进程 stackoverflow异常后,还可以接收 TCP 连接请求吗?
· SQL Server统计信息更新会被阻塞或引起会话阻塞吗?
阅读排行:
· 传国玉玺易主,ai.com竟然跳转到国产AI
· 本地部署 DeepSeek:小白也能轻松搞定!
· 自己如何在本地电脑从零搭建DeepSeek!手把手教学,快来看看! (建议收藏)
· 我们是如何解决abp身上的几个痛点
· 普通人也能轻松掌握的20个DeepSeek高频提示词(2025版)
点击右上角即可分享
微信分享提示