python学习---朴素贝叶斯算法的简单实现
前不久简单学习了python,写了一个朴素贝叶斯算法:
#coding=gbk #Naive Bayes #Calculate the Prob. of class:cls def P(data,cls_val,cls_name="class"): cnt = 0.0 for e in data: if e[cls_name] == cls_val: cnt += 1 return cnt/len(data) #Calculate the Prob(attr|cls) def PT(data,cls_val,attr_name,attr_val,cls_name="class"): cnt1 = 0.0 cnt2 = 0.0 for e in data: if e[cls_name] == cls_val: cnt1 += 1 if e[attr_name] == attr_val: cnt2 += 1 return cnt2/cnt1 #Calculate the NB def NB(data,test,cls_y,cls_n): PY = P(data,cls_y) PN = P(data,cls_n) for key,val in test.items(): print (key,val) PY *= PT(data,cls_y,key,val) PN *= PT(data,cls_n,key,val) return {cls_y:PY,cls_n:PN} if __name__ == "__main__": #data data = [ {"outlook":"sunny", "temp":"hot", "humidity":"high", "wind":"weak", "class":"no" }, {"outlook":"sunny", "temp":"hot", "humidity":"high", "wind":"strong", "class":"no" }, {"outlook":"overcast", "temp":"hot", "humidity":"high", "wind":"weak", "class":"yes" }, {"outlook":"rain", "temp":"mild", "humidity":"high", "wind":"weak", "class":"yes" }, {"outlook":"rain", "temp":"cool", "humidity":"normal", "wind":"weak", "class":"yes" }, {"outlook":"rain", "temp":"cool", "humidity":"normal", "wind":"strong", "class":"no" }, {"outlook":"overcast", "temp":"cool", "humidity":"normal", "wind":"strong", "class":"yes" }, {"outlook":"sunny", "temp":"mild", "humidity":"high", "wind":"weak", "class":"no" }, {"outlook":"sunny", "temp":"cool", "humidity":"normal", "wind":"weak", "class":"yes" }, {"outlook":"rain", "temp":"mild", "humidity":"normal", "wind":"weak", "class":"yes" }, {"outlook":"sunny", "temp":"mild", "humidity":"normal", "wind":"strong", "class":"yes" }, {"outlook":"overcast", "temp":"mild", "humidity":"high", "wind":"strong", "class":"yes" }, {"outlook":"overcast", "temp":"hot", "humidity":"normal", "wind":"weak", "class":"yes" }, {"outlook":"rain", "temp":"mild", "humidity":"high", "wind":"strong", "class":"no" }, ] #calculate print (NB(data,{"outlook":"sunny","temp":"cool","humidity":"high","wind":"strong"},"yes","no"))
这是数据挖掘书本上的一个例子的运行结果: