胶体电荷重整化
Alexander描述
参考 Langmuir 2003, 19, 4027-4033
胶体粒子为球形,半径为\(a\),带电为\(-Ze\),cell半径为\(R\)。
在一个cell里,局域无量纲电势满足PB方程:
\begin{equation}
\nabla2\phi(r)=\kappa_{res}2\sinh\phi(r)
\label{eq:PB} \end{equation}
边界条件:
把方程(\ref{eq:PB})线性化,即在\(\phi(R)=\phi_R\)处将其展开。
方程(\ref{eq:PB})左边
方程(\ref{eq:PB})右边
\begin{equation}
\begin{split}
\kappa_{res}2\sinh\phi(r)&=\kappa_{res}2[\sinh\phi_R+\cosh\phi_R(\phi(r)-\phi_R)]\
&=\kappa_{res}^2\cosh\phi_R[\tanh\phi_R+\widetilde{\phi}(r)]\
&=\kappa_{res}^2\cosh\phi_R[\gamma_0+\widetilde{\phi}(r)]\
&=\kappa_{PB}^2[\gamma_0+\widetilde{\phi}(r)]
\end{split}
\end{equation}
将以上两式合在一起,得线性化的PB方程:
\begin{equation}
\nabla2\widetilde{\phi}(r)=\frac{1}{r2}\frac{d}{dr}\left [r^2\frac{d}{dr}\widetilde{\phi}(r)\right ]=\kappa_{PB}^2[\gamma_0+\widetilde{\phi}(r)]
\label{eq:LPB} \end{equation}
边界条件:
方程\ref{eq:LPB}的解为
根据下式计算等效电量(Effective charge, Renormalized charge):
得
\begin{equation}
Z_{eff}=\frac{\gamma_0}{\lambda_B \kappa_{PB}}{(\kappa_{PB}^2aR-1)\sinh[\kappa_{PB}(R-a)]+\kappa_{PB}(R-a)\cosh[\kappa_{PB}(R-a)]}
\label{eq:Zeff}
\end{equation}
计算\(Z_{eff}\)步骤:
- 解方程(\ref{eq:PB}),得\(\phi_R\)
- 计算\(\kappa_{PB}^2=\kappa_{res}^2\cosh\phi_R\)
- 带入方程(\ref{eq:Zeff}),计算\(Z_{eff}\)
Renormalized jellium model
参考:
- PHYSICAL REVIEW E 69, 031403 (2004)
- THE JOURNAL OF CHEMICAL PHYSICS 126, 014702 (2007)
- THE JOURNAL OF CHEMICAL PHYSICS 133, 234105 (2010)
假设胶体离子均匀分布,作为小离子分布的背景。Poisson-Boltzmann方程:
\begin{equation}
\nabla2\phi(r)=4\pi\lambda_BZ_{back}\rho+\kappa_{res}2\sinh\phi(r)
\label{eq:RJPB} \end{equation}
其中,\(\rho\)为胶体平均密度,
边界条件:
并有
等效电荷\(Z_{eff}=Z_{back}\)
需要用迭代法求出\(Z_{eff}\),见THE JOURNAL OF CHEMICAL PHYSICS 126, 014702 (2007)。