Greedy algorithm

 维基百科:

https://en.wikipedia.org/wiki/Havel%E2%80%93Hakimi_algorithm

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Gallai_theorem

 

Given a list of n natural numbers d1, d2,...,dn, show how to decide in polynomial
time whether there exists an undirected graph G = (V, E) whose node degrees
are precisely the numbers d1, d2, · · · , dn. G should not contain multiple edges
between the same pair of nodes, or “ loop” edges with both endpoints equal to
the same node.

Havel定理描述
给定一个非负整数序列{d1,d2,...dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化。进一步,若图为简单图,则称此序列可简单图化。


可图化的判定比较简单:d1+d2+...dn=0(mod2)。关于具体图的构造,我们可以简单地把奇数度的点配对,剩下的全部搞成自环。


可简单图化的判定,有一个Havel定理,是说: 我们把序列排成不增序,即d1>=d2>=...>=dn,则d可简单图化当且仅当d'=(d2-1, d3-1, ... d(d1+1)-1, d(d1+2), d(d1+3), ... dn)可简单图化。这个定理写起来麻烦,实际上就是说,我们把d排序以后,找出度最大的点(设度为d1),把它和度次大的d1个点之间连边,然后这个点就 可以不管了,一直继续这个过程,直到建出完整的图,或出现负度等明显不合理的情况。


定理的简单证明如下:


(<=)若d'可简单图化,我们只需把原图中的最大度点和d'中度最大的d1个点连边即可,易得此图必为简单图。


(=>)若d可简单图化,设得到的简单图为G。分两种情况考虑:


(a)若G中存在边(V1,V2), (V1,V3), ...(V1,V(d1+1)),则把这些边除去得简单图G',于是d'可简单图化为G'


(b)若存在点Vi,Vj使得i<j, (V1,Vi)不在G中,但(V1,Vj)在G中。这时,因为di>=dj,必存在k使得(Vi, Vk)在G中但(Vj,Vk)不在G中。这时我们可以令GG=G-{(Vi,Vk),(V1,Vj)}+{(Vk,Vj),(V1,Vi)}。GG的度序 列仍为d,我们又回到了情况(a)。

 


 


 

(以下演示转自 “每天进步一点点” 博客: http://sbp810050504.blog.51cto.com/2799422/883904

 

 

 

Havel-Hakimi定理很容易理解:

 

三步走就可以了:

 

比如序列:4 7 7 3 3 3 2 1

 

 

 

下标
1
2
3
4
5
6
7
8
4
7
7
3
3
3
2
1

 

 

 

 

 

第一步:把序列按降序排序。

 

 

 

下标
1
2
3
4
5
6
7
8
7
7
4
3
3
3
2
1

 

 

 

 

 

第二步:删除第一个数7。序列变成

 

 

 

下标
1
2
3
4
5
6
7
7
4
3
3
3
2
1

 

 

 

 

 

第三步:从头开始,数7个数,也就是下标:[1,7]把[1,7]区间里的值都减1

 

由于第一个数已经删除,那么序列变成这样的了:

 

 

 

下标
1
2
3
4
5
6
7
6
3
2
2
2
1
0

 

 

 

然后:

 

重复第一步:排序。

 

重复第二步:删除第一个数6

 

重复第三步:从头开始数6个数:也就是下标【1,6】,把区间【1,6】中的数删除。序列变成:

 

 

 

下标
1
2
3
4
5
6
2
1
1
1
0
-1

 

 

 

由于已经出现了-1,而一个点的边数(度)不可能为负数。所以,我们就可以判定序列无法构成一个图,所以此序列是不可图的。

 

下面再举一个例子:

 

已经排序:

 

 

 

5
4
3
3
2
2
2
1
1
1.

 

 

 

删除第一个数5:

 

 

 

4
3
3
2
2
2
1
1
1.

 

 

 

 

 

把前面5个数减1:

 

 

 

3
2
2
1
1
2
1
1
1.

 

 

 

排序:

 

 

 

3
2
2
2
1
1
1
1
1.

 

 

 

删除第一个数3:

 

 

 

 

 

2
2
2
1
1
1
1
1.

 

 

 

把前面3个数减1:

 

 

 

1
1
1
1
1
1
1
1.

 

 

 

排序:

 

 

 

1
1
1
1
1
1
1
1.

 

 

 

删除第一个数1:

 

 

 

1
1
1
1
1
1
1.

 

 

 

把前面1个数减1:

 

 

 

0
1
1
1
1
1
1.

 

 

 

排序:

 

 

 

1
1
1
1
1
1
0

 

 

 

删除第一个数1:

 

 

 

1
1
1
1
1
0

 

 

 

把前面1个数减1:

 

 

 

0
1
1
1
1
0

 

 

 

排序:

 

 

 

1
1
1
1
0
0

 

 

 

              

 

依此类推:到最后只剩下:

 

 

 

0
0
0
0

 

 

 

由此判断该序列是可图的。

 


 

核心代码:

 

    1. bool Havel_Hakimi(){  
    2.     for(int i=0; i<n-1; ++i){  
    3.         sort(arr+i,arr+n,greater<int>());  
    4.         if(i+arr[i] >= n) return false;  
    5.         for(int j=i+1; j<=i+arr[i] ; ++j){  
    6.             --arr[j];  
    7.             if(arr[j] < 0) return false;  
    8.         }  
    9.     }  
    10.     if(arr[n-1]!=0) return false;  
    11.     return true;  

 

posted @ 2015-10-26 15:59  码农@163  阅读(437)  评论(0编辑  收藏  举报