【原创】cython and python for kenlm

未经允许不可转载

Kenlm相关知识

Kenlm下载地址
kenlm中文版本训练语言模型
如何使用kenlm训练出来的模型C++版本

关于Kenlm模块的使用及C++源码说明

加载Kenlm模块命令

qy@IAT-QYVPN:~/Documents/kenlm/lm$ ../bin/query -n test.arpa


Kenlm模块C++源码说明

query的主入口文件:query_main.cc
query的执行函数文件:ngram_query.hh
注意:
默认执行的是query_main.cc文件96行的

Query<ProbingModel>(file, config, sentence_context, show_words);

而不是lm/wrappers/nplm.hh,这个封装文件是需要NPLM模块的,参考以下代码,当时疏忽了在这个地方耽误了一些时间

#ifdef WITH_NPLM
    } else if (lm::np::Model::Recognize(file)) {
      lm::np::Model model(file);
      if (show_words) {
        Query<lm::np::Model, lm::ngram::FullPrint>(model, sentence_context);
      } else {
        Query<lm::np::Model, lm::ngram::BasicPrint>(model, sentence_context);
      }
#endif

关于Model类的继承关系

  • 最基类virtual_interface.hh lm::base::Model
  • 次基类facade.hh lm::base::ModelFacade : public Model
  • 子类model.hh lm::ngram::GenericModel : public base::ModelFacade<GenericModel<Search, VocabularyT>, State, VocabularyT>

关于cython的简单说明

cython官网
可以从官网下载最新版本,参考Documentation分类中的Cython Wiki和Cython FAQ了解一些知识。
cython-cpp-test-sample
Wrapping C++ Classes in Cython
cython wrapping of base and derived class
std::string arguments in cython
Cython and constructors of classes
Cython基础--Cython入门

kenlm的python模块封装

接下来,让我们进入正题,在kenlm的源码中实际上已经提供了python的应用。在kenlm/python文件夹中,那么为什么还要再封装python模块呢,因为kenlm中所带的python模块仅仅实现了包含<s>和</s>这种情况下的计算分数的方法,而没有提供不包含这种情况的计算分数的算法,这就是为什么要重新封装python模块的原因。

简单介绍一下python模块使用的必要步骤

  • 安装kenlm.so模块到python的目录下,默认直接运行kenlm目录下的setup.py文件即可安装成功sudo python setup.py install --record log
  • 安装成功后,即可运行python example.py文件,查看运行结果。

如何扩展kenlm的python模块

接下来,正式进入python扩展模块的介绍。kenlm.pxd是cython针对所用到C++类及对象的声明文件,kenlm.pyx是真正要编写的cython功能代码,也是未来python所要调用的类及方法。使用cython的编译命令,可以把kenlm.pxdkenlm.pyx编译出kenlm.cpp文件。setup.py文件会用到编译出来的kenlm.cpp文件。

  • cython编译命令cython --cplus kenlm.pyx

扩展后的kenlm.pxd文件

from libcpp.string cimport string

cdef extern from "lm/word_index.hh":
    ctypedef unsigned WordIndex

cdef extern from "lm/return.hh" namespace "lm":
    cdef struct FullScoreReturn:
        float prob
        unsigned char ngram_length

cdef extern from "lm/state.hh" namespace "lm::ngram":
    cdef struct State:
        pass

    ctypedef State const_State "const lm::ngram::State"

cdef extern from "lm/virtual_interface.hh" namespace "lm::base":
    cdef cppclass Vocabulary:
        WordIndex Index(char*)
        WordIndex BeginSentence() 
        WordIndex EndSentence()
        WordIndex NotFound()

    ctypedef Vocabulary const_Vocabulary "const lm::base::Vocabulary"


cdef extern from "lm/model.hh" namespace "lm::ngram":
    cdef cppclass Model:
        const_Vocabulary& GetVocabulary()
        const_State& NullContextState()
        void Model(char* file)
        FullScoreReturn FullScore(const_State& in_state, WordIndex new_word, const_State& out_state)

        void BeginSentenceWrite(void *)
        void NullContextWrite(void *)
        unsigned int Order()
        const_Vocabulary& BaseVocabulary()
        float BaseScore(void *in_state, WordIndex new_word, void *out_state)
        FullScoreReturn BaseFullScore(void *in_state, WordIndex new_word, void *out_state)
        void * NullContextMemory()

扩展后的kenlm.pyx文件

import os

cdef bytes as_str(data):
    if isinstance(data, bytes):
        return data
    elif isinstance(data, unicode):
        return data.encode('utf8')
    raise TypeError('Cannot convert %s to string' % type(data))

cdef int as_in(int &Num):
    (&Num)[0] = 1

cdef class LanguageModel:
    cdef Model* model
    cdef public bytes path
    cdef const_Vocabulary* vocab

    def __init__(self, path):
        self.path = os.path.abspath(as_str(path))
        try:
            self.model = new Model(self.path)
        except RuntimeError as exception:
            exception_message = str(exception).replace('\n', ' ')
            raise IOError('Cannot read model \'{}\' ({})'.format(path, exception_message))\
                    from exception
        self.vocab = &self.model.GetVocabulary()

    def __dealloc__(self):
        del self.model

    property order:
        def __get__(self):
            return self.model.Order()
    
    def score(self, sentence):
        cdef list words = as_str(sentence).split()
        cdef State state
        self.model.BeginSentenceWrite(&state)
        cdef State out_state
        cdef float total = 0
        for word in words:
            total += self.model.BaseScore(&state, self.vocab.Index(word), &out_state)
            state = out_state
        total += self.model.BaseScore(&state, self.vocab.EndSentence(), &out_state)
        return total

    def full_scores(self, sentence):
        cdef list words = as_str(sentence).split()
        cdef State state
        self.model.BeginSentenceWrite(&state)
        cdef State out_state
        cdef FullScoreReturn ret
        cdef float total = 0
        for word in words:
            ret = self.model.BaseFullScore(&state,
                self.vocab.Index(word), &out_state)
            yield (ret.prob, ret.ngram_length)
            state = out_state
        ret = self.model.BaseFullScore(&state,
            self.vocab.EndSentence(), &out_state)
        yield (ret.prob, ret.ngram_length)
    
    def full_scores_n(self, sentence):
        cdef list words = as_str(sentence).split()
        cdef State state
        state = self.model.NullContextState()
        cdef State out_state
        cdef FullScoreReturn ret
        cdef int ovv = 0
        for word in words:
            ret = self.model.FullScore(state,
                self.vocab.Index(word), out_state)
            yield (ret.prob, ret.ngram_length)
            state = out_state

    """""""""""
    """count scores when not included <s> and </s>"""
    """""""""""
    def score_n(self, sentence):
        cdef list words = as_str(sentence).split()
        cdef State state
        state = self.model.NullContextState()
        cdef State out_state
        cdef float total = 0
        for word in words:
            ret = self.model.FullScore(state,
                self.vocab.Index(word), out_state)
            total += ret.prob
            """print(total)"""
            state = out_state
        return total


    def __contains__(self, word):
        cdef bytes w = as_str(word)
        return (self.vocab.Index(w) != 0)

    def __repr__(self):
        return '<LanguageModel from {0}>'.format(os.path.basename(self.path))

    def __reduce__(self):
        return (LanguageModel, (self.path,))
posted @ 2018-12-21 11:07  Jonky  阅读(1243)  评论(0编辑  收藏  举报