编码技巧之数据结构【笔记】

编码技巧之数据结构【笔记】

数据结构回顾

列表中的数组,链表,队列,栈

树中的二叉树,搜索树,堆/优先队列


图中的无向图,有向图,有向无环图

图的算法中的深度优先遍历,广度优先遍历,拓扑排序和最短路径/最小生成树

树的遍历

二叉树的遍历方法:

前序遍历

先遍历树根,然后前序遍历左子树,然后再前序遍历右子树

中序遍历

先中序遍历左子树,然后遍历树根,然后再中序遍历右子树

后序遍历

先后序遍历左子树,然后后序遍历右子树,然后遍历树根

层次遍历

一层一层的遍历下去,自左向右,自上而下

树的基础代码:

package interview.tree;

public class TreeNode {
  private final char value;
  private TreeNode left;
  private TreeNode right;
  private TreeNode parent;

  public TreeNode(char value) {
    this.value = value;
    this.left = null;
    this.right = null;
    this.parent = null;
  }

  public char getValue() {
    return value;
  }

  public TreeNode getLeft() {
    return left;
  }

  public void setLeft(TreeNode left) {
    this.left = left;
    if (this.left != null) {
      this.left.setParent(this);
    }
  }

  public TreeNode getRight() {
    return right;
  }

  public void setRight(TreeNode right) {
    this.right = right;
    if (this.right != null) {
      this.right.setParent(this);
    }
  }

  public TreeNode getParent() {
    return parent;
  }

  private void setParent(TreeNode parent) {
    this.parent = parent;
  }
}

例题一:根据前序中序构造二叉树

我们可以发现左子树前序为BDEG,左子树中序为DBGE

具体代码如下:

package interview.tree;

public class TreeCreator {
  public TreeNode createSampleTree() {
    TreeNode root = new TreeNode('A');
    root.setLeft(new TreeNode('B'));
    root.getLeft().setLeft(new TreeNode('D'));
    root.getLeft().setRight(new TreeNode('E'));
    root.getLeft().getRight().setLeft(new TreeNode('G'));
    root.setRight(new TreeNode('C'));
    root.getRight().setRight(new TreeNode('F'));
    return root;
  }

  public TreeNode createTree(String preOrder, String inOrder) {
    if (preOrder.isEmpty()) {
      return null;
    }

    char rootValue = preOrder.charAt(0);
    int rootIndex = inOrder.indexOf(rootValue);

    TreeNode root = new TreeNode(rootValue);
    root.setLeft(
        createTree(
            preOrder.substring(1, 1 + rootIndex),
            inOrder.substring(0, rootIndex)));
    root.setRight(
        createTree(
            preOrder.substring(1 + rootIndex),
            inOrder.substring(1 + rootIndex)));

    return root;
  }
}

TreeTraversal.java

	package interview.tree;
	
	public class TreeTraversal {
	
	  public void preOrder(TreeNode root) {
	    if (root == null) {
	      return;
	    }
	    System.out.print(root.getValue());
	    preOrder(root.getLeft());
	    preOrder(root.getRight());
	  }
	
	  public void inOrder(TreeNode root) {
	    if (root == null) {
	      return;
	    }
	    inOrder(root.getLeft());
	    System.out.print(root.getValue());
	    inOrder(root.getRight());
	  }
	
	  public void postOrder(TreeNode root) {
	    if (root == null) {
	      return;
	    }
	    postOrder(root.getLeft());
	    postOrder(root.getRight());
	    System.out.print(root.getValue());
	  }
	
	  public String postOrder(String preOrder, String inOrder) {
	    if (preOrder.isEmpty()) {
	      return "";
	    }
	
	    char rootValue = preOrder.charAt(0);
	    int rootIndex = inOrder.indexOf(rootValue);
	
	    return
	        postOrder(
	            preOrder.substring(1, 1 + rootIndex),
	            inOrder.substring(0, rootIndex)) +
	        postOrder(
	            preOrder.substring(1 + rootIndex),
	            inOrder.substring(1 + rootIndex)) +
	        rootValue;
	  }
	
	  public static void main(String[] args) {
	    TreeCreator creator = new TreeCreator();
	    TreeTraversal traversal = new TreeTraversal();
	
	    System.out.println("Sample tree traversal");
	    System.out.println("=====");
	    TreeNode sampleTree = creator.createSampleTree();
	    traversal.preOrder(sampleTree);
	    System.out.println();
	    traversal.inOrder(sampleTree);
	    System.out.println();
	    traversal.postOrder(sampleTree);
	    System.out.println();
	
	    System.out.println("=====");
	    System.out.println("Creating tree from preOrder and inOrder");
	    System.out.println("=====");
	    TreeNode tree = creator.createTree("ABDEGCF", "DBGEACF");
	    traversal.postOrder(tree);
	    System.out.println();
	    traversal.postOrder(creator.createTree("", ""));
	    System.out.println();
	    traversal.postOrder(creator.createTree("A", "A"));
	    System.out.println();
	    traversal.postOrder(creator.createTree("AB", "BA"));
	    System.out.println();
	
	    System.out.println("=====");
	    System.out.println("Generating postOrder directly");
	    System.out.println("=====");
	    System.out.println(
	        traversal.postOrder("ABDEGCF", "DBGEACF"));
	    System.out.println(
	        traversal.postOrder("", ""));
	    System.out.println(
	        traversal.postOrder("A", "A"));
	    System.out.println(
	        traversal.postOrder("AB", "BA"));
	  }
	}

总结:

在思考算法的时候,只要减小问题的规模即可

对于初始值的确定,需要严格地根据递归函数的定义

例题二:寻找中序遍历的时候的下一个结点

具体代码如下:

package interview.tree;

public class InOrder {

  public TreeNode next(TreeNode node) {
    if (node == null) {
      return null;
    }

    if (node.getRight() != null) {
      return first(node.getRight());
    } else {
      while(node.getParent() != null
          && node.getParent().getRight() == node) {
        node = node.getParent();
      }
      // now we have:
      // node.getParent() == null
      // || node is left child of its parent
      return node.getParent();
    }
  }

  public TreeNode first(TreeNode root) {
    if (root == null) {
      return null;
    }

    TreeNode curNode = root;
    while(curNode.getLeft() != null) {
      curNode = curNode.getLeft();
    }
    return curNode;
  }

  public void traverse(TreeNode root) {
    for (TreeNode node = first(root);
        node != null;
        node = next(node)) {
      System.out.print(node.getValue());
    }
    System.out.println();
  }

  public static void main(String[] args) {
    TreeCreator creator = new TreeCreator();
    InOrder inOrder = new InOrder();

    TreeNode sampleTree = creator.createSampleTree();
    inOrder.traverse(sampleTree);

    inOrder.traverse(creator.createTree("", ""));
    inOrder.traverse(creator.createTree("A", "A"));
    inOrder.traverse(creator.createTree("AB", "BA"));
    inOrder.traverse(creator.createTree("ABCD", "DCBA"));
    inOrder.traverse(creator.createTree("ABCD", "ABCD"));
  }
}

总结:

需要注意的是分情况讨论

注意null指针

使用private函数来维护复杂数据结构

posted @ 2021-03-02 13:49  DbWong_0918  阅读(103)  评论(0编辑  收藏  举报