【笔记】matplotilb数据可视化基础
matplotilb基础
matplotilb是我们使用的一个基础的可视化方法
一般来说,使用matplotilb是较为专业的绘制图形的选择
不需要很专业的时候可以只是用matplotilb的子模块pyplot
首先我们先设置一个x,一个y
以x为横坐标,以y为纵坐标
通过plot(x,y)就可以得到所需要的图形,其本质是一个折线图,只是因为含有一百个元素,让其看起来像是曲线图
还可以输出多条曲线
曲线的颜色是可以自行更改的,且可以使用十六进制的样式
线条的样式可以使用linestyle进行更改
对坐标轴的范围一样可以调节,xlim和ylim(可用算式),也可以使用axis直接对两个坐标轴同时调节,同时也可以使用xlabel和ylabel对x轴和y轴做注释,还可以使用在x,y其中增加label对曲线进行命名,通过legend对其进行显示,若想为整张图片添加一个标题,使用title即可实现
包含部分整体的代码如下
plt.plot(x,y,label="sin(x)")
plt.plot(x,cosy,color="red",linestyle='--',label="cos(x)")
plt.xlabel("x axis")
plt.ylabel("y value")
plt.legend()
plt.title("hello")
绘制散点图 scatter plot
通常来讲,散点图的横纵两个轴是特征,绘制二维特征
从绘图来说,就是将plot换成scatter
要想得到标准的二维的正态分布,可以使用
x = np.random.normal(0,1,10000)
y = np.random.normal(0,1,10000)
plt.scatter(x,y)
可通过alpha来调节不透明度,是效果更加的直观
您能读到这儿,我呢是发自真心的感谢您,若要转载,还望请您带上链接