二叉树的前中后序遍历(非递归)

前序遍历一:

    vector<int> preorderTraversal(TreeNode* root) {
        stack<TreeNode*> S;
        vector<int> v;
        TreeNode* rt = root;
        while(rt || S.size()){
            while(rt){
                S.push(rt->right);
                v.push_back(rt->val);
                rt=rt->left;
            }
            rt=S.top();S.pop();
        }
        return v;        
    }

前序遍历二:

vector<int> preorderTraversal(TreeNode* root) {
    vector<int> res;
    if(!root) return res;
    TreeNode* p = root;
    stack<TreeNode*> S;
    S.push(root);
    while(!S.empty()) {
        p = S.top();
        S.pop();
        res.push_back(p->val);
        if(p->right) S.push(p->right);
        if(p->left) S.push(p->left);
    }
    return res;
}

 

中序遍历:

vector<int> inorderTraversal(TreeNode* root) 
{
    stack<TreeNode*> S;
    vector<int> v;
    TreeNode* rt = root;
    while(rt || S.size()){
        while(rt){
            S.push(rt);
            rt=rt->left;
        }
        rt=S.top();S.pop();
        v.push_back(rt->val);
        rt=rt->right;
    }
    return v;  
}

 

后序遍历一:

    vector<int> postorderTraversal(TreeNode* root) {
        stack<TreeNode*> S;
        vector<int> v;
        TreeNode* rt = root;
        while(rt || S.size()){
            while(rt){
                S.push(rt->left);
                v.push_back(rt->val);
                rt=rt->right;
            }
            rt=S.top();S.pop();
        }
        reverse(v.begin(),v.end());
        return v;
    }

后序遍历二:

vector<int> postorderTraversal(TreeNode* root) {
    vector<int> res;
    stack<TreeNode*> S;
    TreeNode *rt = root, *pre = NULL;
    while (rt || !S.empty()) {
        while (rt) {//走到最左边
            S.push(rt);
            rt = rt->left;
        }
        
        rt = S.top();
        if (rt->right && rt->right != pre)//右子树存在,未被访问
            rt = rt->right;
        else {
            S.pop();
            res.push_back(rt->val);
            pre = rt;    //记录最近访问过的节点
            rt = NULL;    //回溯的重要步骤
        }
    }
    return res;
}

后序遍历三:

vector<int> postorderTraversal(TreeNode* root) {
    vector<int> res;
    stack<TreeNode*> S;
    TreeNode *rt = root;
    TreeNode *pre = NULL;
    if(rt == NULL) return res;
    S.push(root);
    while(!S.empty()) {
        rt = S.top();
        if(!rt->left && !rt->right || (pre && (pre == rt->left || pre == rt->right))) {
            res.push_back(rt->val);
            S.pop();
            pre = rt;
        }
        else {
            if(rt->right) S.push(rt->right);
            if(rt->left) S.push(rt->left);
        }
    }
    return res;
}

后序遍历四:

vector<int> postorderTraversal(TreeNode* root) {
    vector<int> res;
    stack<TreeNode*> S;
    if(root) S.push(root);
    while(!S.empty()) {
        TreeNode *t = S.top();
        S.pop();
        if(t) {
            S.push(t);         //在右节点之前重新插入该节点,以便在最后处理(访问值)
            S.push(nullptr);   //nullptr跟随t插入,标识已经访问过,还没有被处理
            if(t->right) S.push(t->right);
            if(t->left) S.push(t->left);
        } else {
            res.push_back(S.top()->val);
            S.pop();
        }
    }
    return res;   
}
posted @ 2020-05-20 13:06  Joker1937  阅读(158)  评论(0编辑  收藏  举报