多项式板子
本页面由洛谷云剪贴板进化而来。
免责:多项式可能未经良好测试,并不完善或可能执行时出现问题,如有问题请在本页评论区说明。
改自 Submission。备份。
feature:指令集优化ntt(来自 fjzzq2002);转置原理多点求值与插值;2log 多项式复合(逆)(改自 hly1204 github 版);开罐即食版多叉半在线卷积;整式递推+线性递推+\(O(\sqrt n \log n)\) 一条龙服务。
结构体名字就叫 poly,底层是 vector<u32>
,使用负数可能会出错。
dft与idft由指令集优化,速度较快,放在了 namespace fast_number_theory_transform
中,函数名为 ntt(u32* ptr, int b)
与 intt(u32* ptr, int b)
,\(\text{ptr}\) 为指向 vector 头的指针,多项式长度为 \(2^b\)。
支持多叉半在线卷积,放在了 namespace __semiconvol__
中,ln/exp/inv由此方法实现,较快(参数未调试)。
全局模数为 \(\text{mod}\),它的一个原根为 \(\text{proot}\)。
快进到重点:支持什么函数?怎么支持?
函数均以成员函数的方式提供,结构体本身作为自然的第一个参数多项式带入。除快速插值外,任何函数都不会改变结构体本身的值,所需的答案以返回值方式提供。下面称对应结构体的变量名为 f
。
例如:若要计算对应多项式的指数函数,只需要调用 f.exp()
,其返回对应指数函数,且不会改变 f
。
-
多项式基础操作
重载运算符的加减法与乘除法(也可以使用+=
等运算符,其中一个参数也可以为int
类型);求导函数deri()
;积分函数intg(int c = 0)
,其中 \(c\) 为常数项;右复合 \(x^k\)shiftvar(int k)
或amp(int k)
; -
单参数多项式基础函数
对数函数ln()
;指数函数exp()
;开根sqrt()
;开根后求逆ivsqrt()
;一系列三角函数和反三角函数sin()
、cos()
、tan()
、asin()
、acos()
、atan()
;右复合 \(x + c\)shift(int c)
;
\(O(n \log^2 n)\) 复合逆composite_inv()
;
【模板】Chirp Z 变换ChirpZ(int c, int m)
或czt(int c, int m)
;
基于转置原理的多点求值eval(int n, poly a)
,求出 \(n\) 个点值 \(f(a_0), f(a_1), \dots, f(a_{n-1})\);基于转置原理的快速插值intp(int n, const poly& x, const poly& y)
,根据 \(n\) 个点值 \((x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\) 还原最短多项式并存储在f
中(由于该操作不会用到f
中的值,f
初始时被视为空结构体,最终会覆盖其中的所有值); -
双参数多项式基础函数
包含由半在线卷积实现的除法函数quo(const poly& g)
,返回 \(f/g\),保留到 \(f\) 的最高次项;取余operator %(const poly& f, const poly& g)
,返回pair<poly, poly>
类的元素 \((H(x), R(x))\),满足 \(f(x) = g(x) H(x) + R(x)\)。
\(O(n \log^2 n)\) 复合composite(const poly& g, int n)
,返回 \(f(g)\) 的前 \(n\) 项(默认为 \(f\) 的项数);
以 lambda 表达式形式(非成员函数)实现的enum_kth(const poly& f, const poly& g, int k, int n)
,返回 \(f(y) = [x^k]\frac{g(x)}{1 - yf(x)} = \sum_{i = 0}^{n - 1}\left( [x^k] g(x) f^i(x)\right) y^i\),位于composite_inv
函数内 -
多项式杂函数
包含翻转多项式系数rev()
;返回 \(\text{mod } x^{n+1}\) 的一个截断split(int n)
;输入输出流函数,可以在确定长度 \(n\) 后直接用cin
由低到高输入 \(n\) 个数,以及由低到高输出用空格分隔的系数;shrink()
收缩 vector 长度使最高次项为常数项或最高的不为 \(0\) 的项;clear()
清空多项式;resize(int n)
将多项式的最高次项改变为 \(x^{n-1}\);redegree(int n)
将多项式的最高次项改变为 \(x^{n}\);eval(int x_0)
返回 \(f(x_0)\) 的值;用户定义字面量operator""_p
,例如代码片段"x^3 + 4x + 5"_p
会被转换成 poly 类型的多项式 \(x^3 + 4x + 5\); -
半在线卷积
语法是src(poly &f, const poly& g, const function<void(const int &, poly &, const poly &)> &relax)
。
具体地,我们已知 \(g\) 的系数,要求 \(f\) 满足\[f[n] = R\left(\sum_{i = 0}^n f[i] g[n - i]\right) \]其中 \(R\) 是一个函数。程序会把 \(S = \sum_{i = 0}^n f[i] g[n - i]\) 算好,并存储在 \(f[n]\) 中,我们只需要提供
relax(const int& n, poly& f, const poly& g)
,由 \(S\) 计算出 \(f[n]\)。结果会存储在多项式类 \(f\) 中。复杂度 \(O(n \frac{\log^2 n}{\log\log n})\)。
例如:这里介绍了 \(\exp\) 的半在线卷积形式,我们知道 \(R(S) = S/n\),因此提前在 \(g[n]\) 处乘 \(n\),我们只需要提供relax
为[&](const int &n, poly &f, const poly &g) {if(n==0)f[n]=1;else f[n]=1ll*f[n]*ginv(n)%mod;}
。 -
插件(包含在
namespace plugins
里,非成员函数,删除整个 namespace 对多项式基础功能没有影响)
求解两类斯特林数stirling#_$
,其中#
取 \(1\) 或 \(2\),$
取row
或col
,代表第#
类斯特林数$
。求行时参数列表为(int n)
,返回第 \(n\) 行斯特林数;求列时参数列表为(int n, int k)
,返回前 \(n\) 个第 \(k\) 列斯特林数。
求解欧拉数eulerian_$
,其中$
取col
。至于为什么没有求一行,再等等,而且我相信您自己可以实现。
符号化方法相关函数:SEQ(poly A)
、MSET(poly A)
、Exp(poly A)
、Ln(poly A)
线性递推:linear_recur(u64 n, int k, poly f, poly a)
在输入满足板子的情况下求解线性递推 \(a_n = \sum_{i = 1}^k f_i a_{n - i}\) 的第 \(n\) 项,其中初值由 \(a\) 给出,\(a\) 的长度应当 \(\ge k\)。
BM:BM(int n, poly a)
在给定 \(a_0, a_1, \dots, a_{n - 1}\) 后找到最短递推式 \(f\) 满足 \(a_n = \sum_{i = 1}^k f_{i} a_{n - i}\),返回多项式 \(f\)。注意:\(f\) 均为 1-index 的。可以使用函数recur_by_bm(u64 n, int k, poly a)
在给定 \(a_0, a_1, \dots, a_{k - 1}\) 后输出 \(a_n\)。
整式递推(\(O(\sqrt n \log n)\) 自动机):接口是p_recur(ll n, int m, int d, poly a, poly* P)
。给出一个阶数为 \(m\) 的整式递推,其对数列 \(\{a_n\}\) 满足 \(\sum_{k = 0}^m a_{n - k} P_k(n) = 0\) 并有 \(d\) 为 \(\text{deg } P_k(x)\) 的最大值,那么给定了前 \(m\) 项(\(a_0, \dots, a_{m - 1}\))后可以以 \(O\left(m^2\sqrt{nd}\left(m + \log nd\right)\right)\) 的复杂度求得 \(a_n\)。目前支持 \(m\) 的最大值为 \(17\),因为这为加速矩阵乘法的最大矩阵大小。主要函数都放在了namespace _PR_base
里面。
ODE 自动机 -
数学函数
包含快速幂qp(i64 x, int y)
,返回 \(x^y\) 在模 \(\text{mod}\) 意义下的值;lg(u32 x)
返回以 2 为底 \(x\) 的对数的值;norm(u32 x)
保证 \(x\) 不大于 \(2\text{mod}\),返回 \(x\) 在模 \(\text{mod}\) 意义下的值;二次剩余函数isqrt(u32 x)
,实现了 cipolla 算法,返回 \(x\) 在模 \(\text{mod}\) 意义下的二次剩余。
阶乘函数gfac(u32 n)
;逆元函数ginv(u32 n)
;阶乘逆元函数gifc(u32 n)
;组合数函数gC(u32 n, u32 m)
;无需初始化,直接调用即可,底层复杂度关于值域线性;
重点完了。
指令集优化ntt需要内存池,大小由变量 pool_siz
确定。定义内存池部分的代码为
u32 pool[(pool_siz) * 4] __attribute__((aligned(64))), *ptr = pool;
u32 *p0[(pool_siz)], *p1[(pool_siz)], *q0[(pool_siz)], *q1[(pool_siz)];
可以视情况调整其大小,默认值为 \(2^{23}\)。
loj挑战多项式的 Submission。
多项式
// #pragma GCC optimize("-Ofast","-funroll-all-loops","-ffast-math")
// #pragma GCC optimize("-fno-math-errno")
// #pragma GCC optimize("-funsafe-math-optimizations")
// #pragma GCC optimize("-freciprocal-math")
// #pragma GCC optimize("-fno-trapping-math")
// #pragma GCC optimize("-ffinite-math-only")
// #pragma GCC optimize("-fno-stack-protector")
// #pragma GCC target ("avx2","sse4.2","fma")
#include <immintrin.h>
namespace __POLY__ {
#define inline __attribute__((__gnu_inline__, __always_inline__, __artificial__)) inline
const int mod = 998244353;
const int proot = 3, pool_siz = 1 << 23;
typedef long long i64;
typedef unsigned int u32;
typedef unsigned long long u64;
typedef vector<u32> vu32;
namespace math {
inline int qp(long long x, int y, int ans = 1) {
for (y < 0 ? y += mod - 1 : 0; y; y >>= 1, x = x * x % mod)
if (y& 1) ans = ans * x % mod;
return ans;
}
inline constexpr int lg(u32 x) { return x == 0 ? 0 : ((int)sizeof(int) * __CHAR_BIT__ - __builtin_clz(x)); }
inline u32 fst_mul(u32 x, u64 p, u64 q) { return x * p - (q * x >> 32) * mod; }
inline u32 Norm(u32 m) { return m >= mod ? m - mod : m; }
const u32 modm2 = mod + mod;
vu32 __fac({1, 1}), __ifc({1, 1}), __inv({0, 1});
inline void __prep(int n) {
static int i = 2;
if (i < n) for (__fac.resize(n), __ifc.resize(n), __inv.resize(n); i < n; i++)
__fac[i] = 1ll * i * __fac[i - 1] % mod, __inv[i] = 1ll * (mod - mod / i) * __inv[mod % i] % mod, __ifc[i] = 1ll * __inv[i] * __ifc[i - 1] % mod;
}
inline u32 gfac(u32 x) { return __prep(x + 1), __fac[x]; }
inline u32 gifc(u32 x) { return __prep(x + 1), __ifc[x]; }
inline u32 ginv(u32 x) { return __prep(x + 1), __inv[x]; }
inline u32 gC(u32 n, u32 m) {
if (n < m) return 0;
return 1ll * gfac(n) * gifc(m) % mod * gifc(n - m) % mod;
}
u32 I = 0;
struct cpl {
u32 x, y;
cpl(u32 _x = 0, u32 _y = 0) : x(_x), y(_y) {}
inline cpl operator*(const cpl& a) const { return cpl((1ull * x * a.x + 1ull * I * y % mod * a.y) % mod, (1ull * x * a.y + 1ull * y * a.x) % mod); }
};
inline cpl cplpow(cpl a, int y, cpl b = cpl(1, 0)) {
for (; y; y >>= 1, a = a * a) if (y& 1) b = b * a;
return b;
}
inline u32 isqrt(u32 x) {
static mt19937 rnd(mod);
if (mod == 2 || !x || x == 1) return x;
u32 a = 0;
do {
a = rnd() % mod;
} while (qp((1ull * a * a + mod - x) % mod, mod >> 1) != mod - 1);
I = (1ll * a * a + mod - x) % mod;
a = cplpow(cpl(a, 1), (mod + 1) >> 1).x;
return min(a, mod - a);
}
} using namespace math;
namespace polynomial {
const int maxbit = 23;
namespace fast_number_theory_transform {
u32 pool[(pool_siz) * 4] __attribute__((aligned(64))), *ptr = pool;
u32 *p0[(pool_siz)], *p1[(pool_siz)], *q0[(pool_siz)], *q1[(pool_siz)];
inline void bit_flip(u32 *p, int t) {
for (int i = 0, j = 0; i < t; ++i) {
if (i > j) swap(p[i], p[j]);
for (int l = t >> 1; (j ^= l) < l; l >>= 1) ;
}
}
inline void prep(int n) {
static int t = 1;
for (; t < n; t <<= 1) {
int g = qp(proot, (mod - 1) / (t * 2));
u32 *p, *q;
p = p0[t] = ptr;
ptr += max(t, 16);
p[0] = 1;
for (int m = 1; m < t; ++m)
p[m] = p[m - 1] * (u64)g % u32(mod);
bit_flip(p, t);
q = q0[t] = ptr;
ptr += max(t, 16);
for (int i = 0; i < t; ++i)
q[i] = (u64(p[i]) << 32) / mod;
g = qp(g, mod - 2);
p = p1[t] = ptr;
ptr += max(t, 16);
p[0] = 1;
for (int m = 1; m < t; ++m)
p[m] = p[m - 1] * (u64)g % u32(mod);
bit_flip(p, t);
q = q1[t] = ptr;
ptr += max(t, 16);
for (int i = 0; i < t; ++i)
q[i] = (u64(p[i]) << 32) / mod;
}
}
inline u32 my_mul(u32 a, u32 b, u32 c) { return b * (u64)a - ((u64(a) * c) >> 32) * u64(mod); }
inline __m128i my_mullo_epu32(const __m128i& a, const __m128i& b) { return (__m128i)((__v4su)a * (__v4su)b); }
inline __m128i my_mulhi_epu32(const __m128i& a, const __m128i& b) {
__m128i a13 = _mm_shuffle_epi32(a, 0xF5);
__m128i b13 = _mm_shuffle_epi32(b, 0xF5);
__m128i prod02 = _mm_mul_epu32(a, b);
__m128i prod13 = _mm_mul_epu32(a13, b13);
__m128i prod01 = _mm_unpacklo_epi32(prod02, prod13);
__m128i prod23 = _mm_unpackhi_epi32(prod02, prod13);
__m128i prod = _mm_unpackhi_epi64(prod01, prod23);
return prod;
}
void ntt(u32 *__restrict__ x, int bit) {
int n = 1 << bit, t = n;
prep(n);
for (int m = 1; m < n; m <<= 1) {
t >>= 1;
u32 *__restrict__ p = p0[m];
u32 *__restrict__ q = q0[m];
if (t == 1 or t == 2) {
u32 *xa = x, *xb = x + t;
for (int i = 0; i < m; ++i, xa += t + t, xb += t + t)
for (int j = 0; j < t; ++j) {
u32 u = xa[j] - (xa[j] >= modm2) * modm2;
u32 v = my_mul(xb[j], p[i], q[i]);
xa[j] = u + v;
xb[j] = u - v + modm2;
}
}
else if (t == 4) {
u32 *xa = x, *xb = x + t;
for (int i = 0; i < m; ++i, xa += t + t, xb += t + t) {
const __m128i p4 = _mm_set1_epi32(p[i]), q4 = _mm_set1_epi32(q[i]), mm = _mm_set1_epi32(mod + mod), m0 = _mm_set1_epi32(0), m1 = _mm_set1_epi32(mod);
for (int j = 0; j < t; j += 4) {
__m128i u = _mm_loadu_si128((__m128i *)(xa + j));
u = _mm_sub_epi32(u, _mm_and_si128(_mm_or_si128(_mm_cmpgt_epi32(u, mm), _mm_cmpgt_epi32(m0, u)), mm));
__m128i v = _mm_loadu_si128((__m128i *)(xb + j));
v = _mm_sub_epi32(my_mullo_epu32(v, p4), my_mullo_epu32(my_mulhi_epu32(v, q4), m1));
_mm_storeu_si128((__m128i *)(xa + j), _mm_add_epi32(u, v));
_mm_storeu_si128((__m128i *)(xb + j), _mm_add_epi32(_mm_sub_epi32(u, v), mm));
}
}
}
else {
u32 *xa = x, *xb = x + t;
for (int i = 0; i < m; ++i, xa += t + t, xb += t + t) {
const __m128i p4 = _mm_set1_epi32(p[i]), q4 = _mm_set1_epi32(q[i]), mm = _mm_set1_epi32(mod + mod), m0 = _mm_set1_epi32(0), m1 = _mm_set1_epi32(mod);
for (int j = 0; j < t; j += 8) {
__m128i u0 = _mm_loadu_si128((__m128i *)(xa + j));
__m128i u1 = _mm_loadu_si128((__m128i *)(xa + j + 4));
__m128i v0 = _mm_loadu_si128((__m128i *)(xb + j));
__m128i v1 = _mm_loadu_si128((__m128i *)(xb + j + 4));
u0 = _mm_sub_epi32(u0, _mm_and_si128(_mm_or_si128(_mm_cmpgt_epi32(u0, mm), _mm_cmpgt_epi32(m0, u0)), mm));
u1 = _mm_sub_epi32(u1, _mm_and_si128(_mm_or_si128(_mm_cmpgt_epi32(u1, mm), _mm_cmpgt_epi32(m0, u1)), mm));
v0 = _mm_sub_epi32(my_mullo_epu32(v0, p4), my_mullo_epu32(my_mulhi_epu32(v0, q4), m1));
v1 = _mm_sub_epi32(my_mullo_epu32(v1, p4), my_mullo_epu32(my_mulhi_epu32(v1, q4), m1));
_mm_storeu_si128((__m128i *)(xa + j), _mm_add_epi32(u0, v0));
_mm_storeu_si128((__m128i *)(xa + j + 4), _mm_add_epi32(u1, v1));
_mm_storeu_si128((__m128i *)(xb + j), _mm_add_epi32(_mm_sub_epi32(u0, v0), mm));
_mm_storeu_si128((__m128i *)(xb + j + 4), _mm_add_epi32(_mm_sub_epi32(u1, v1), mm));
}
}
}
}
for (int i = 0; i < n; ++i) x[i] -= (x[i] >= modm2) * modm2, x[i] -= (x[i] >= u32(mod)) * u32(mod);
}
void intt(u32 *__restrict__ x, int bit) {
int n = 1 << bit, t = 1;
prep(n);
for (int m = (n >> 1); m; m >>= 1) {
u32 *__restrict__ p = p1[m];
u32 *__restrict__ q = q1[m];
if (t == 1 or t == 2) {
u32 *xa = x, *xb = x + t;
for (int i = 0; i < m; ++i, xa += t + t, xb += t + t)
for (int j = 0; j < t; ++j) {
u32 u = xa[j], v = xb[j];
xa[j] = u + v - (u + v >= modm2) * modm2;
xb[j] = my_mul(u - v + modm2, p[i], q[i]);
}
} else if (t == 4) {
u32 *xa = x, *xb = x + t;
for (int i = 0; i < m; ++i, xa += t + t, xb += t + t) {
const __m128i p4 = _mm_set1_epi32(p[i]), q4 = _mm_set1_epi32(q[i]), mm = _mm_set1_epi32(mod + mod), m0 = _mm_set1_epi32(0), m1 = _mm_set1_epi32(mod);
for (int j = 0; j < t; j += 4) {
__m128i u = _mm_loadu_si128((__m128i *)(xa + j));
__m128i v = _mm_loadu_si128((__m128i *)(xb + j));
__m128i uv = _mm_add_epi32(u, v);
_mm_storeu_si128((__m128i *)(xa + j), _mm_sub_epi32(uv, _mm_and_si128(_mm_or_si128(_mm_cmpgt_epi32(uv, mm), _mm_cmpgt_epi32(m0, uv)), mm)));
uv = _mm_add_epi32(_mm_sub_epi32(u, v), mm);
_mm_storeu_si128((__m128i *)(xb + j), _mm_sub_epi32(my_mullo_epu32(uv, p4), my_mullo_epu32(my_mulhi_epu32(uv, q4), m1)));
}
}
} else {
u32 *xa = x, *xb = x + t;
for (int i = 0; i < m; ++i, xa += t + t, xb += t + t) {
const __m128i p4 = _mm_set1_epi32(p[i]), q4 = _mm_set1_epi32(q[i]), mm = _mm_set1_epi32(mod + mod), m0 = _mm_set1_epi32(0), m1 = _mm_set1_epi32(mod);
for (int j = 0; j < t; j += 8) {
__m128i u0 = _mm_loadu_si128((__m128i *)(xa + j));
__m128i u1 = _mm_loadu_si128((__m128i *)(xa + j + 4));
__m128i v0 = _mm_loadu_si128((__m128i *)(xb + j));
__m128i v1 = _mm_loadu_si128((__m128i *)(xb + j + 4));
__m128i uv0 = _mm_add_epi32(u0, v0);
__m128i uv1 = _mm_add_epi32(u1, v1);
_mm_storeu_si128((__m128i *)(xa + j), _mm_sub_epi32(uv0, _mm_and_si128(_mm_or_si128(_mm_cmpgt_epi32(uv0, mm), _mm_cmpgt_epi32(m0, uv0)), mm)));
_mm_storeu_si128((__m128i *)(xa + j + 4), _mm_sub_epi32(uv1, _mm_and_si128(_mm_or_si128(_mm_cmpgt_epi32(uv1, mm), _mm_cmpgt_epi32(m0, uv1)), mm)));
uv0 = _mm_add_epi32(_mm_sub_epi32(u0, v0), mm);
uv1 = _mm_add_epi32(_mm_sub_epi32(u1, v1), mm);
_mm_storeu_si128((__m128i *)(xb + j), _mm_sub_epi32(my_mullo_epu32(uv0, p4), my_mullo_epu32(my_mulhi_epu32(uv0, q4), m1)));
_mm_storeu_si128((__m128i *)(xb + j + 4), _mm_sub_epi32(my_mullo_epu32(uv1, p4), my_mullo_epu32(my_mulhi_epu32(uv1, q4), m1)));
}
}
} t <<= 1;
}
u32 rn = qp(n, mod - 2);
for (int i = 0; i < n; ++i) x[i] = x[i] * (u64)rn % mod;
}
}
using fast_number_theory_transform::intt;
using fast_number_theory_transform::ntt;
struct poly {
vu32 f;
template <typename _Tp = size_t, typename _Tv = u32>
poly(_Tp len = 1, _Tv same_val = 0) : f(len, same_val) {}
poly(const vu32& _f) : f(_f) {}
poly(const vector<int>& _f) {
f.resize(((int)_f.size()));
for (int i = 0; i < ((int)_f.size()); i++)
f[i] = _f[i] + ((_f[i] >> 31)& mod);
}
template <typename T> poly(initializer_list<T> _f) : poly(vector<T>(_f)) {}
template <typename T> poly(T *__first, T *__last) : poly(vector<typename iterator_traits<T>::value_type>(__first, __last)) {}
inline operator vu32() const { return f; }
inline vu32::iterator begin() { return f.begin(); }
inline vu32::iterator end() { return f.end(); }
inline const vu32::const_iterator begin() const { return f.begin(); }
inline const vu32::const_iterator end() const { return f.end(); }
inline void swap(poly& _f) { f.swap(_f.f); }
inline int degree() const { return (int)f.size() - 1; }
inline int size() const { return (int)f.size(); }
inline poly& resize(int x) { return f.resize(x), *this; }
inline poly& redegree(int x) { return f.resize(x + 1), *this; }
inline void clear() { f.resize(1), f[0] = 0; }
inline void shrink() { int ndeg = f.size() - 1; while (ndeg > 0 and f[ndeg] == 0) ndeg--; f.resize(ndeg + 1); }
inline void rev() { reverse(f.begin(), f.end()); }
inline poly split(int n) const { return n <= 0 ? poly(1, 1) : (n < (int)f.size() ? poly(f.begin(), f.begin() + n + 1) : poly(*this).redegree(n)); }
inline u32& operator[](u32 x) { return f[x]; }
inline u32 operator[](u32 x) const { return f[x]; }
inline u32 get(u32 x) const { return x < f.size() ? f[x] : 0; }
inline int eval(int x) { int ret = f[degree()]; for(int i = degree() - 1; i >= 0; -- i) ret = (1ll * ret * x + f[i]) % mod; return ret; }
inline friend istream& operator>>(istream& in, poly& x) {
for (int i = 0, _buf; i < x.size(); i++) in >> _buf, _buf %= mod, _buf += (_buf < 0) * mod, x[i] = _buf;
return in;
}
inline friend ostream& operator<<(ostream& out, const poly& x) {
out << x[0];
for (int i = 1; i < x.size(); i++) out << ' ' << x[i];
return out;
}
inline u32 *data() { return f.data(); }
inline const u32 *data() const { return f.data(); }
inline poly& operator+=(const poly& a) {
f.resize(max(f.size(), a.f.size()));
for (int i = 0; i < a.f.size(); i++) f[i] = f[i] + a.f[i] - (f[i] + a.f[i] >= mod) * mod;
return *this;
}
inline poly& operator-=(const poly& a) {
f.resize(max(f.size(), a.f.size()));
for (int i = 0; i < a.f.size(); i++) f[i] = f[i] - a.f[i] + (f[i] < a.f[i]) * mod;
return *this;
}
inline poly& operator+=(const u32& b) { f[0] = f[0] + b - mod * (f[0] + b >= mod); return *this; }
inline poly& operator-=(const u32& b) { f[0] = f[0] - b + mod * (f[0] < b); return *this; }
inline poly operator+(const poly& a) const { return (poly(*this) += a); }
inline poly operator-(const poly& a) const { return (poly(*this) -= a); }
friend inline poly operator+(u32 a, const poly& b) { return (poly(1, a) += b); }
friend inline poly operator-(u32 a, const poly& b) { return (poly(1, a) -= b); }
friend inline poly operator+(const poly& a, u32 b) { return (poly(a) += poly(1, b)); }
friend inline poly operator-(const poly& a, u32 b) { return (poly(a) -= poly(1, b)); }
inline poly operator-() const {
poly _f;
_f.f.resize(f.size());
for (int i = 0; i < _f.f.size(); i++) _f.f[i] = (f[i] != 0) * mod - f[i];
return _f;
}
inline poly shiftvar(int k) const {
poly ret(size());
for (int i = 0; i * k <= degree(); ++i) ret[i * k] = f[i];
return ret;
}
inline poly amp(int k) const {
poly ret(size());
for (int i = 0; i * k <= degree(); ++i) ret[i * k] = f[i];
return ret;
}
inline poly& operator*=(const poly& a) {
int n = degree(), m = a.degree();
if (n <= 32 || m <= 32) {
f.resize(n + m + 1);
for (int i = n + m; i >= 0; i--) {
f[i] = 1ll * f[i] * a.f[0] % mod;
for (int j = max(1, i - n), j_up = min(m, i); j <= j_up; j++) f[i] = (f[i] + 1ll * f[i - j] * a.f[j]) % mod;
} return *this;
}
vu32 _f(a.f);
int bit = lg(n + m);
f.resize(1 << bit), _f.resize(1 << bit);
ntt(f.data(), bit), ntt(_f.data(), bit);
for (int i = 0; i < (1 << bit); i++) f[i] = 1ll * f[i] * _f[i] % mod;
intt(f.data(), bit), f.resize(n + m + 1);
return *this;
}
inline poly operator*(const poly& a) const { return (poly(*this) *= a); }
template <typename T> inline friend poly operator*(const poly& a, const T& b) {
poly ret(a);
for (int i = 0; i < ret.f.size(); ++i) ret[i] = 1ll * ret[i] * b % mod;
return ret;
}
template <typename T> inline friend poly operator*(const T& b, const poly& a) {
poly ret(a);
for (int i = 0; i < ret.f.size(); ++i) ret[i] = 1ll * ret[i] * b % mod;
return ret;
}
template <typename T> inline poly& operator*=(const T& b) { for (int i = 0; i < f.size(); ++i) f[i] = 1ll * f[i] * b % mod; return *this; }
inline poly& operator>>=(int x) { return f.resize(f.size() + x), memmove(f.data() + x, f.data(), 4 * (f.size() - x)), memset(f.data(), 0, 4 * x), *this; }
inline poly operator>>(int x) const { return (poly(*this) >>= x); }
inline poly& operator<<=(int x) { return x >= f.size() ? (clear(), *this) : (memmove(f.data(), f.data() + x, 4 * (f.size() - x)), f.resize(f.size() - x), *this); }
inline poly operator<<(int x) const { return (poly(*this) <<= x); }
inline poly& shiftindexwith(int x) { return x >= f.size() ? (memset(f.data(), 0, 4 * f.size()), *this) : (memmove(f.data(), f.data() + x, 4 * (f.size() - x)), memset(f.data(), 0, 4 * x), *this); }
inline poly shiftindex(int x) const { return (poly(*this).shiftindexwith(x)); }
inline poly inv() const;
inline poly quo(const poly& g) const;
inline poly operator/(const poly& g) { return f.size() == 1 ? poly(1, qp(g[0], -1, f[0])) : quo(g); }
inline poly& quowith(const poly& g) { return f.size() == 1 ? (f[0] = qp(g[0], -1, f[0]), *this) : (*this = quo(g)); }
friend pair<poly,poly> operator % (const poly& x, const poly& y) {
poly A = x, B = y;
A.rev(), B.rev(); B.resize(x.degree() - y.degree() + 1);
B = B.inv(); B *= A;
B.resize(x.degree() - y.degree() + 1); B.rev();
poly R = x - B * y; R.resize(y.degree() - 1);
return {B, R};
}
inline poly deri() const {
int n = degree(); poly res(n);
for (int i = 1; i <= n; i++) res[i - 1] = 1ll * f[i] * i % mod;
return res;
}
inline poly intg(u32 C = 0) const {
int n = degree(); poly res(n + 2); res[0] = C;
for (int i = 0; i <= n; i++) res[i + 1] = 1ll * ginv(i + 1) * f[i] % mod;
return res;
}
inline poly pow(u32 x, u32 modphix = -1) {
if (modphix == -1) modphix = x;
int n = size() - 1;
long long empt = 0;
while (empt <= n and !f[empt]) ++empt;
if (1ll * empt * x > n) return poly(size());
poly res(size());
for (int i = 0; i <= n - empt; ++i) res[i] = f[i + empt];
int val_0 = res[0], inv_0 = qp(val_0, mod - 2), pow_0 = qp(val_0, modphix);
for (int i = 0; i <= n - empt; ++i) res[i] = 1ll * res[i] * inv_0 % mod;
res = (res.ln() * x).exp();
empt *= x;
for (int i = n; i >= empt; --i) res[i] = 1ll * res[i - empt] * pow_0 % mod;
for (int i = empt - 1; i >= 0; --i) res[i] = 0;
return res;
}
inline poly ivsqrt() const {
int nsize = f.size(), mxb = lg(f.size() - 1);
vu32 a(1 << mxb), _f(f);
_f.resize(1 << mxb);
a[0] = qp(isqrt(f[0]), mod - 2);
for (int nb = 0; nb < mxb; nb++) {
vu32 _a(a.begin(), a.begin() + (1 << nb)), _b(_f.begin(), _f.begin() + (2 << nb));
_a.resize(4 << nb), _b.resize(4 << nb);
ntt(_a.data(), nb + 2), ntt(_b.data(), nb + 2);
for (int i = 0; i < (4 << nb); i++)
_a[i] = 1ull * (mod - _a[i]) * _a[i] % mod * _a[i] % mod * _b[i] % mod, _a[i] = (_a[i] + (_a[i]& 1) * mod) >> 1;
intt(_a.data(), nb + 2), memcpy(a.data() + (1 << nb), _a.data() + (1 << nb), 4 << nb);
}
return a.resize(nsize), a;
}
inline poly sqrt() const {
if (f.size() == 1) return poly(1, isqrt(f[0]));
if (f.size() == 2 and f[0] == 1)
return poly(vector<int>{1, (int)(1ll * f[1] * (mod + 1) / 2 % mod)});
int nsize = f.size(), mxb = lg(nsize - 1);
vu32 a(1 << mxb), _f(f), _b;
_f.resize(1 << mxb);
a[0] = qp(isqrt(f[0]), mod - 2);
for (int nb = 0; nb < mxb - 1; nb++) {
vu32 _a(a.begin(), a.begin() + (1 << nb));
_b = vu32(_f.begin(), _f.begin() + (2 << nb));
_a.resize(4 << nb), _b.resize(4 << nb);
ntt(_a.data(), nb + 2), ntt(_b.data(), nb + 2);
for (int i = 0; i < (4 << nb); i++)
_a[i] = 1ull * (mod - _a[i]) * _a[i] % mod * _a[i] % mod * _b[i] % mod, _a[i] = (_a[i] + (_a[i]& 1) * mod) >> 1;
intt(_a.data(), nb + 2);
memcpy(a.data() + (1 << nb), _a.data() + (1 << nb), 4 << nb);
}
ntt(a.data(), mxb);
vu32 _a(a);
for (int i = 0; i < (1 << mxb); i++) a[i] = 1ll * a[i] * _b[i] % mod;
intt(a.data(), mxb), memset(a.data() + (1 << (mxb - 1)), 0, 2 << mxb);
vu32 g0(a);
ntt(a.data(), mxb), ntt(_f.data(), mxb);
for (int i = 0; i < (1 << mxb); i++)
a[i] = (1ll * a[i] * a[i] + mod - _f[i]) % mod * (mod - _a[i]) % mod, a[i] = (a[i] + (a[i]& 1) * mod) >> 1;
intt(a.data(), mxb);
memcpy(g0.data() + (1 << (mxb - 1)), a.data() + (1 << (mxb - 1)), 2 << mxb);
return g0;
}
inline poly czt(int c, int m) const {
poly ret(f);
int inv = qp(c, mod - 2), n = ret.size();
ret.resize(m);
poly F(n), G(n + m);
for (int i = 0, p1 = 1, p2 = 1; i < n; ++i) {
F[n - i - 1] = 1ll * ret[i] * p1 % mod;
if (i > 0) p2 = 1ll * p2 * inv % mod, p1 = 1ll * p1 * p2 % mod;
}
for (int i = 0, p1 = 1, p2 = 1; i < n + m; ++i) {
G[i] = p1;
if (i > 0) p2 = 1ll * p2 * c % mod, p1 = 1ll * p1 * p2 % mod;
}
F = F * G;
for (int i = 0, p1 = 1, p2 = 1; i < m; ++i) {
ret[i] = 1ll * F[i + n - 1] * p1 % mod;
if (i > 0) p2 = 1ll * p2 * inv % mod, p1 = 1ll * p1 * p2 % mod;
}
return ret;
}
inline poly ChirpZ(int c, int m) const { return czt(c, m); }
inline poly shift(int c) const {
c %= mod;
c = c + (c < 0) * mod;
if (c == 0) return *this;
poly A(size()), B(size()), ret(size());
for (int i = 0; i < size(); ++i) A[size() - i - 1] = 1ll * f[i] * gfac(i) % mod;
for (int i = 0, pc = 1; i < size(); ++i, pc = 1ll * pc * c % mod)
B[i] = 1ll * pc * gifc(i) % mod;
A *= B, A.resize(size());
for (int i = 0; i < size(); ++i) ret[i] = 1ll * A[size() - i - 1] * gifc(i) % mod;
return ret;
}
inline poly fdt() const {
poly F(*this), E(size());
for (int i = 0; i < size(); ++i) E[i] = gifc(i);
F *= E, F.resize(size());
for (int i = 0; i < size(); ++i) F[i] = 1ll * F[i] * gfac(i) % mod;
return F;
}
inline poly ifdt() const {
poly F(*this), E(size());
for (int i = 0; i < size(); ++i) F[i] = 1ll * F[i] * gifc(i) % mod;
for (int i = 0; i < size(); ++i)
if (i& 1) E[i] = mod - gifc(i);
else E[i] = gifc(i);
return (F * E).split(degree());
}
inline poly ln() const;
inline poly exp() const;
inline poly eval(int n, poly a) const;
inline poly intp(int n, const poly& x, const poly& y);
inline poly sin() const {
int omega_4 = qp(proot, (mod - 1) >> 2);
poly F = ((*this) * omega_4).exp();
return qp(omega_4 * 2, mod - 2) * (F - F.inv());
}
inline poly cos() const {
int omega_4 = qp(proot, (mod - 1) >> 2);
poly F = ((*this) * omega_4).exp();
return qp(2, mod - 2) * (F + F.inv());
}
inline poly tan() const { return sin() / cos(); }
inline poly asin() const {
poly A = deri(), B = (*this) * (*this);
B.resize(size());
B = (1 - B).ivsqrt();
return (A * B).intg().split(degree());
}
inline poly acos() const {
poly A = (mod - 1) * deri(), B = (*this) * (*this);
B.resize(size());
B = (1 - B).ivsqrt();
return (A * B).intg().split(degree());
}
inline poly atan() const {
poly A = deri(), B = 1 + (*this) * (*this);
B.resize(size());
B = B.inv();
return (A * B).intg().split(degree());
}
inline poly composite_inv(int n = -1) const {
if (n == -1) n = size();
auto enum_kth = [&](const poly& f, const poly& g, int k, int n) {
/*return f(y) = [x^k](g(x) / (1 - y* f(x))) = \sum_{i = 0}^{n - 1} [x^k] g(x) f^i(x) y^i*/
if (k < 0 or n <= 0) return poly();
poly P(k + 1), Q((k + 1) << 1);
copy_n(g.f.cbegin(), min(P.size(), g.size()), P.f.begin());
Q.f.front() = 1;
if (f.size()) for (int i = k + 1, j = 0; i < Q.size() and j < f.size();) Q[i ++] = (f[j] == 0 ? 0 : mod - f[j]), ++ j;
auto quad_nonres = [&](){ for(int i = 2; ; ++ i) if (qp(i, mod >> 1) == mod - 1) return i; };
auto sylow2_subgroup_gen = [&](){ return qp(quad_nonres(), mod >> __builtin_ctz(mod - 1)); };
auto get_root = [&](int n) {
vu32 root = {ginv(2)};
vector<int> irt(__builtin_ctz(mod - 1) - 1);
irt.back() = qp(sylow2_subgroup_gen(), mod - 2);
for(int i = __builtin_ctz(mod - 1) - 3; i >= 0; -- i) irt[i] = 1ll * irt[i + 1] * irt[i + 1] % mod;
int s = (int)root.size();
if (s < n) {
root.resize(n);
for (int i = __builtin_ctz(s), j; (1 << i) < n; ++ i) {
root[j = (1 << i)] = irt[i];
for (int k = j + 1; k < (j << 1); ++ k)
root[k] = 1ll * root[k - j] * root[j] % mod;
root[j] = 1ll * root[j] * root.front() % mod;
}
} return root;
};
for (int d = 1; k != 0; d <<= 1, k >>= 1) {
const int lg_len = lg((2 * d + 1) * (2 * k + 2) - 1), len = 1 << lg_len;
poly P_(len), Q_(len), U(len / 2), V(len / 2);
for (int i = 0; i < d; ++ i) copy_n(P.f.cbegin() + i * (k + 1), k + 1, P_.f.begin() + i * (2 * k + 2));
for (int i = 0; i <= d; ++ i) copy_n(Q.f.cbegin() + i * (k + 1), k + 1, Q_.f.begin() + i * (2 * k + 2));
ntt(P_.data(), lg_len); ntt(Q_.data(), lg_len);
if (k& 1) {
auto root = get_root(len >> 1);
for (int i = 0; i < len; i += 2) {
U[i / 2] = 1ll * (1ll * P_[i] * Q_[i + 1] % mod - 1ll * P_[i + 1] * Q_[i] % mod + mod) * root[i / 2] % mod;
V[i / 2] = 1ll * Q_[i] * Q_[i + 1] % mod;
}
} else {
auto root = get_root(1);
for (int i = 0; i < len; i += 2) {
U[i / 2] = 1ll * (1ll * P_[i] * Q_[i + 1] + 1ll * P_[i + 1] * Q_[i]) % mod * root[0] % mod;
V[i / 2] = 1ll * Q_[i] * Q_[i + 1] % mod;
}
}
intt(U.data(), lg_len - 1), intt(V.data(), lg_len - 1);
P.f.assign((2 * d) * (k / 2 + 1), 0);
Q.f.assign((2 * d + 1) * (k / 2 + 1), 0);
for (int i = 0; i < (d << 1); ++ i) copy_n(U.f.cbegin() + i * (k + 1), k / 2 + 1, P.f.begin() + i * (k / 2 + 1));
for (int i = 0; i <= (d << 1); ++ i) copy_n(V.f.cbegin() + i * (k + 1), k / 2 + 1, Q.f.begin() + i * (k / 2 + 1));
} P.resize(n), Q.resize(n);
return (P / Q).resize(n);
};
if (n <= 0 or f.size() < 2) return poly(0);
if (n == 1) return poly(1);
poly F = *this; F.resize(n);
int f1_inv = qp(F[1], mod - 2), _c = f1_inv;
for (int i = 1; i < n; ++ i) F[i] = 1ll * F[i] * _c % mod, _c = 1ll * _c * f1_inv % mod;
auto a = enum_kth(F, (poly){1}, n - 1, n);
for (int i = 1; i < n; ++ i) a[i] = 1ll * a[i] * (n - 1) % mod * ginv(i) % mod;
poly a_(a.size());
for (int i = 0; i < a.size(); ++ i) a_[i] = a[a.degree() - i];
a_ = a_.pow(mod - qp(n - 1, mod - 2));
poly B(2); B[0] = 0, B[1] = f1_inv;
return (a_ * B).resize(n);
}
inline poly composite(const poly& g, int n = -1) const {
if (n == -1) n = size();
if (n <= 0) return poly();
if (g.size() == 0) return poly(n + 1);
poly Q(n * 2);
int g0_ = g[0];
Q[0] = 1;
for (int i = n, j = 0; j < g.size() and i < 2 * n;) Q[i ++] = (g[j] == 0 ? 0 : mod - g[j]), ++ j;
function<poly(const poly&, int, int)> rec = [&](const poly& Q, int d, int n) {
if (n == 0) {
poly P(d), Qinv(d);
for(int i = d - 1, j = 0; j < f.size() and i >= 0; ) P[i --] = f[j ++];
for(int i = 0, e = 1; i < d; ++ i) Qinv[i] = 1ll * gC(d + i - 1, i) * e % mod, e = 1ll * e * g0_ % mod;
return (P * Qinv).resize(d);
}
const int lg_len = lg((2 * d + 1) * (2 * n + 2) - 1), len = 1 << lg_len;
poly Q_(len), VV(1 << (lg_len - 1));
for (int i = 0; i <= d; ++ i) copy_n(Q.f.begin() + i * (n + 1), n + 1, Q_.f.begin() + i * (n * 2 + 2));
ntt(Q_.data(), lg_len);
for (int i = 0; i < len; i += 2) VV[i / 2] = 1ll * Q_[i] * Q_[i + 1] % mod;
intt(VV.data(), lg_len - 1);
poly V((d * 2 + 1) * (n / 2 + 1));
for (int i = 0; i <= 2 * d; ++ i) copy_n(VV.f.begin() + i * (n + 1), n / 2 + 1, V.f.begin() + i * (n / 2 + 1));
const poly T = rec(V, 2 * d, n / 2);
poly T_(len / 2), UU(len);
for (int i = 0; i < 2 * d; ++ i) copy_n(T.f.begin() + i * (n / 2 + 1), n / 2 + 1, T_.f.begin() + i * (n + 1));
ntt(T_.data(), lg_len - 1);
for (int i = 0; i < len; i += 2) UU[i] = 1ll * T_[i / 2] * Q_[i + 1] % mod, UU[i + 1] = 1ll * T_[i / 2] * Q_[i] % mod;
intt(UU.data(), lg_len);
poly U(d * (n + 1));
for (int i = 0; i < d; ++ i) copy_n(UU.f.begin() + (i + d) * (n * 2 + 2), n + 1, U.f.begin() + i * (n + 1));
return U;
};
return rec(Q, 1, max(n - 1, size() - 1)).resize(n);
}
};
inline poly operator""_p(const char *str, size_t len) {
poly ans(2);
int sgn = 1, phase = 0, coeff = 0, touch = 0, cnum = 0;
auto clean = [&]() {if(sgn==-1)coeff=(coeff==0?coeff:mod-coeff);if(phase==-1)ans[1]+=coeff;else if(phase==0){if(sgn==-1)cnum=(cnum==0?0:mod-cnum);ans[0]+=(int)cnum;}else if(phase==1)ans.resize(max(cnum+1,ans.size())),ans[cnum]+=coeff;else assert(0);phase=cnum=touch=0; };
for (int i = 0; i < (int)len; ++i) {
if (str[i] == '+') clean(), sgn = 1;
else if (str[i] == '-') clean(), sgn = -1;
else if ('0' <= str[i] and str[i] <= '9') {
assert(phase == 0 || phase == 1);
if (phase == 0) touch = 1, cnum = (10ll * cnum + str[i] - 48) % mod;
else cnum = 10ll * cnum + str[i] - 48, assert(cnum < 1e8);
} else if (str[i] == 'x') {
while (str[i + 1] == ' ') ++i;
assert(str[i + 1] == '^' || str[i + 1] == '+' || str[i + 1] == '-' || str[i + 1] == 0);
phase = -1;
coeff = touch ? cnum : 1;
cnum = 0;
} else if (str[i] == '^') {
assert(phase == -1);
phase = 1;
}
} clean();
return ans;
}
namespace __semiconvol__ {
const int logbr = 4, br = 1 << logbr, maxdep = (maxbit - 1) / logbr + 1, __bf = 7, bf = max(__bf, logbr - 1), pbf = 1 << bf;
inline void src(poly& f, const poly& g, const function<void(const int& , poly& , const poly& )>& relax) {
int nsize = g.size(), mxb = lg(nsize - 1);
f.resize(1 << mxb);
vu32 __prentt[maxdep][br];
for (int i = 0, k = mxb; k > bf; k -= logbr, i++) {
for (int j = 0; j < br - 1; j++) {
if ((j << (k - logbr)) >= nsize)
break;
__prentt[i][j].resize(2 << (k - logbr));
int nl = (j << (k - logbr)), nr = min(((j + 2) << (k - logbr)), nsize) - nl;
memcpy(__prentt[i][j].data(), g.data() + nl, nr * 4);
ntt(__prentt[i][j].data(), k - logbr + 1);
}
}
function<void(int, int, int)> __div = [&](int x, int l, int r) {if(r-l<=pbf){for(int i=l;i<r;i++){relax(i,f,g);if(i+1<r)for(int j=i+1;j<r;j++)f[j]=(f[j]+1ll*f[i]*g[j-i])%mod;}return;}int nbit=mxb-logbr*(x+1),nbr=0;vu32 __tmp[br];while(l+(nbr<<nbit)<r){__tmp[nbr].resize(2<<nbit);nbr++;}for(int i=0;i<nbr;i++){if(i!=0){intt(__tmp[i].data(),nbit+1);for(int j=0;j<(1<<nbit);j++){u32&x=f[l+(i<<nbit)+j],&y=__tmp[i][j+(1<<nbit)];x=x+y-(x+y>=mod)*mod,y=0;}}__div(x+1,l+(i<<nbit),min(l+((i+1)<<nbit),r));if(i!=nbr-1){memcpy(__tmp[i].data(),f.data()+l+(i<<nbit),4<<nbit);ntt(__tmp[i].data(),nbit+1);for(int j=i+1;j<nbr;j++)for(int k=0;k<(2<<nbit);k++)__tmp[j][k]=(__tmp[j][k]+1ll*__tmp[i][k]*__prentt[x][j-i-1][k])%mod;}} };
__div(0, 0, nsize);
f.resize(nsize);
}
}
using __semiconvol__::src;
inline poly poly::ln() const {
poly ret;
src(ret, *this, [&](const int& i, poly& f, const poly& g) {if(i==0)f[i]=0;else f[i]=(1ll*g[i]*i+mod-f[i])%mod; });
for (int i = degree(); i >= 1; -- i) ret[i] = 1ll * ginv(i) * ret[i] % mod;
return ret;
}
inline poly poly::exp() const {
poly ret, tmp(*this);
for (int i = 0; i < size(); ++ i) tmp[i] = 1ll * tmp[i] * i % mod;
src(ret, tmp, [&](const int& i, poly& f, const poly& g) {if(i==0)f[i]=1;else f[i]=1ll*f[i]*ginv(i)%mod; });
return ret;
}
inline poly poly::inv() const {
poly ret, tmp(*this);
int ivf0 = qp(f[0], mod - 2);
tmp[0] = 0;
src(ret, tmp, [&](const int& i, poly& f, const poly& g) {if(i==0)f[i]=ivf0;else f[i]=1ll*ivf0*(mod-f[i])%mod; });
return ret;
}
inline poly poly::quo(const poly& g) const {
using namespace __semiconvol__;
int nsize = f.size(), mxb = lg(nsize - 1);
vu32 res(1 << mxb), __prentt[maxdep][br], _f(g.f);
u32 ivf0 = qp(_f[0], -1);
_f[0] = 0, _f.resize(nsize);
for (int i = 0, k = mxb; k > bf; k -= logbr, i++) {
for (int j = 0; j < br - 1; j++) {
if ((j << (k - logbr)) >= nsize) break;
__prentt[i][j].resize(2 << (k - logbr));
int nl = (j << (k - logbr)), nr = min(((j + 2) << (k - logbr)), nsize) - nl;
memcpy(__prentt[i][j].data(), _f.data() + nl, nr * 4);
ntt(__prentt[i][j].data(), k - logbr + 1);
}
}
function<void(int, int, int)> __div = [=,& res,& __prentt,& _f,& mxb,& __div,& ivf0](int x, int l, int r) {if(r-l<=pbf){for(int i=l;i<r;i++){res[i]=1ll*ivf0*(i==0?f[0]:f[i]+mod-res[i])%mod;if(i+1<r){u64 __tmp=res[i];for(int j=i+1;j<r;j++)res[j]=(res[j]+__tmp*_f[j-i])%mod;}}return;}int nbit=mxb-logbr*(x+1),nbr=0;vu32 __tmp[br];while(l+(nbr<<nbit)<r){__tmp[nbr].resize(2<<nbit);nbr++;}for(int i=0;i<nbr;i++){if(i!=0){intt(__tmp[i].data(),nbit+1);for(int j=0;j<(1<<nbit);j++){u32&x=res[l+(i<<nbit)+j],&y=__tmp[i][j+(1<<nbit)];x=x+y-(x+y>=mod)*mod,y=0;}}__div(x+1,l+(i<<nbit),min(l+((i+1)<<nbit),r));if(i!=nbr-1){memcpy(__tmp[i].data(),res.data()+l+(i<<nbit),4<<nbit);ntt(__tmp[i].data(),nbit+1);for(int j=i+1;j<nbr;j++)for(int k=0;k<(2<<nbit);k++)__tmp[j][k]=(__tmp[j][k]+1ll*__tmp[i][k]*__prentt[x][j-i-1][k])%mod;}} };
__div(0, 0, nsize);
return res.resize(nsize), res;
}
namespace __multipoint_operation__ {
vector<poly> __Q;
poly _E_Mul(poly A, poly B) {
int n = A.size(), m = B.size();
B.rev(), B = A * B;
for (int i = 0; i < n; ++i) A[i] = B[i + m - 1];
return A;
}
void _E_Init(int p, int l, int r, poly& a) {
if (l == r) {
__Q[p].resize(2);
__Q[p][0] = 1, __Q[p][1] = (a[l] ? mod - a[l] : a[l]);
return;
} int mid = l + r >> 1;
_E_Init(p << 1, l, mid, a), _E_Init(p << 1 | 1, mid + 1, r, a);
__Q[p] = __Q[p << 1] * __Q[p << 1 | 1];
}
void _E_Calc(int p, int l, int r, const poly& F, poly& g) {
if (l == r) return void(g[l] = F[0]);
poly __F(r - l + 1);
for (int i = 0, ed = r - l + 1; i < ed; ++i) __F[i] = F[i];
int mid = l + r >> 1;
_E_Calc(p << 1, l, mid, _E_Mul(__F, __Q[p << 1 | 1]), g);
_E_Calc(p << 1 | 1, mid + 1, r, _E_Mul(__F, __Q[p << 1]), g);
}
vector<poly> __P;
void _I_Init(int p, int l, int r, const poly& x) {
if (l == r) {
__P[p].resize(2), __P[p][0] = (x[l] ? mod - x[l] : 0), __P[p][1] = 1;
return;
} int mid = l + r >> 1;
_I_Init(p << 1, l, mid, x), _I_Init(p << 1 | 1, mid + 1, r, x);
__P[p] = __P[p << 1] * __P[p << 1 | 1];
}
poly _I_Calc(int p, int l, int r, const poly& t) {
if (l == r) return poly(1, t[l]);
int mid = l + r >> 1;
poly L(_I_Calc(p << 1, l, mid, t)), R(_I_Calc(p << 1 | 1, mid + 1, r, t));
L = L * __P[p << 1 | 1], R = R * __P[p << 1];
for (int i = 0; i < (int)R.size(); ++i) {
L[i] = L[i] + R[i];
if (L[i] >= mod) L[i] -= mod;
} return L;
}
}
inline poly poly::eval(int n, poly a) const {
using namespace __multipoint_operation__;
n = max(n, size());
poly v(n), F(f);
__Q.resize(n << 2);
F.resize(n + 1), a.resize(n);
_E_Init(1, 0, n - 1, a);
__Q[1].resize(n + 1);
_E_Calc(1, 0, n - 1, _E_Mul(F, __Q[1].inv()), v);
return v;
}
inline poly poly::intp(int n, const poly& x, const poly& y) {
using namespace __multipoint_operation__;
__P.resize(n << 2);
_I_Init(1, 0, n - 1, x);
__P[1] = __P[1].deri();
poly t = __P[1].eval(n, x);
for (int i = 0; i < n; ++i) t[i] = 1ll * y[i] * qp(t[i], mod - 2) % mod;
f = _I_Calc(1, 0, n - 1, t);
return *this;
}
} using namespace polynomial;
} using namespace __POLY__;
插件
粘贴在 } using namespace __POLY__;
上方即可。
namespace plugins {
poly _S1R_solve(const int& n) {
if (n == 0) return poly(1, 1);
int mid = n >> 1;
poly f = _S1R_solve(mid);
f.resize(mid + 1);
poly A = f.shift(mid), B(mid + 1);
for (int i = 0; i <= mid; ++i) B[i] = f[i];
A *= B, f.resize(n + 1);
A.redegree(n);
if (n& 1) for (int i = 0; i <= n; ++i)
f[i] = ((i ? A[i - 1] : 0) + 1ll * (n - 1) * A[i]) % mod;
else for (int i = 0; i <= n; ++i)
f[i] = A[i];
return f;
}
inline poly stirling2_row(const int& n) {
poly A(n + 1), B(n + 1);
for (int i = 0; i <= n; i++)
A[i] = (i& 1 ? mod - gifc(i) : gifc(i)), B[i] = 1ll * qp(i, n) * gifc(i) % mod;
return (A * B).split(n);
}
inline poly stirling2_col(const int& n, const int& k) {
poly f(n + 1);
for(int i = 1; i <= n; ++ i) f[i] = gifc(i);
f = f.pow(k);
for(int i = 1; i <= n; ++ i) f[i] = 1ll * f[i] * gfac(i) % mod * gifc(k) % mod;
return f;
}
inline poly stirling1_row(const int& n) { return _S1R_solve(n); }
inline poly stirling1_col(const int& n, const int& k) {
poly f(n + 1);
f[0] = 1, f[1] = mod - 1;
f = f.inv().ln().pow(k);
for(int i = 1; i <= n; ++ i) f[i] = 1ll * f[i] * gfac(i) % mod * gifc(k) % mod;
return f;
}
inline poly eulerian_col(const int& n, const int& k) {
poly f1(max(k, n) + 1), f2(max(k, n) + 1), xex(n + 1), ekx(n + 1), ek1x(n + 1);
for(int i = 0; i < n; ++ i) {
if (i& 1) xex[i + 1] = mod - gifc(i);
else xex[i + 1] = gifc(i);
}
int _c1 = 1, _c2 = 1;
for(int i = 0; i <= n; ++ i) {
ekx[i] = 1ll * _c1 * gifc(i) % mod;
ek1x[i] = 1ll * _c2 * gifc(i) % mod;
_c1 = 1ll * _c1 * k % mod;
_c2 = 1ll * _c2 * (k + 1) % mod;
}
for(int i = 0; i <= k; ++ i) f1[i] = 1ll * qp(mod + i - k - 1, i) * gifc(i) % mod;
for(int i = 0; i < k; ++ i) f2[i] = 1ll * qp(mod - k + i, i) * gifc(i) % mod;
f1 = ek1x * f1.composite(xex);
f2 = ekx * f2.composite(xex);
f1 -= f2; f1.resize(n);
for(int i = 0; i < n; ++ i) f1[i] = 1ll * f1[i] * gfac(i) % mod;
return f1;
}
inline poly SEQ(const poly& A) { return (1 - A).inv(); }
inline poly MSET(const poly& A) {
poly ret(A);
for (int i = 2; i < A.size(); ++i)
for (int j = 1; i * j < A.size(); ++j)
ret[i * j] = (ret[i * j] + 1ll * ginv(i) * A[j]) % mod;
return ret.exp();
}
inline poly Exp(const poly& A) { return MSET(A); }
inline poly Ln(poly f) {
f[0] = 1, f = f.ln();
for (int i = 1; i < f.size(); ++i) f[i] = 1ll * f[i] * i % mod;
poly prime(f.size() + 1), mu(f.size() + 1), ret(f.size()); mu[1] = 1;
vector<bool> vis(f.size() + 1); int cnt = 0;
for (int i = 2; i <= f.size(); ++i) {
if (!vis[i]) prime[++cnt] = i, mu[i] = mod - 1;
for (int j = 1; j <= cnt and i * prime[j] <= f.size(); ++j) {
vis[i * prime[j]] = 1;
if (i % prime[j] == 0) break;
mu[i * prime[j]] = (mu[i] == 0 ? 0 : mod - mu[i]);
}
}
for (int i = 1; i < f.size(); ++i)
for (int j = 1; i * j < f.size(); ++j)
ret[i * j] = (ret[i * j] + 1ll * f[i] * mu[j]) % mod;
for (int i = 1; i < ret.size(); ++i) if (ret[i]) ret[i] = 1ll * ret[i] * ginv(i) % mod;
ret[0] = 0;
return ret;
}
inline int _R_Div(poly F, poly G, u64 n) {
int len = max(F.size(), G.size());
int m = 1, o = 0;
while (m < len) m <<= 1, ++o;
F.resize(1 << o + 1), G.resize(1 << o + 1);
while (n > m) {
ntt(F.data(), o + 1), ntt(G.data(), o + 1);
for (int i = 0; i < m * 2; ++i) F[i] = 1ll * F[i] * G[i ^ 1] % mod;
for (int i = 0; i < m; ++i) G[i] = 1ll * G[i << 1] * G[i << 1 | 1] % mod;
intt(F.data(), o + 1), intt(G.data(), o);
for (int i = 0, j = n& 1; i < len; i++, j += 2) F[i] = F[j];
for (int i = len, ed = 1 << o + 1; i < ed; ++i) F[i] = G[i] = 0;
n >>= 1;
} G.resize(m), G = G.inv();
int s = n; n = F.size() - 1, m = G.size() - 1;
int a = max(0, s - m), b = min(s, n), ans = 0;
for (int i = a; i <= b; ++i)
ans = (ans + 1ll * F[i] * G[s - i]) % mod;
return ans;
}
inline int linear_recur(u64 n, int k, poly f, poly a) {
poly F(k + 1); F[k] = 1; assert(a.size() >= k); a.resize(k);
for (int i = 1; i <= k; ++i) F[k - i] = (f[i] == 0 ? 0 : mod - f[i]);
F.rev(); f = (a * F).split(a.degree());
return _R_Div(f, F, n);
}
inline poly BM(int n, poly a) {
a.f.emplace(a.f.begin(), 0);
poly ans, lst; int w = 0; u64 delt = 0;
for (int i = 1; i <= n; ++i) {
u64 tmp = 0;
for (int j = 0; j < ans.size(); ++j) tmp = (tmp + 1ll * a[i - j - 1] * ans[j]) % mod;
if ((a[i] - tmp + mod) % mod == 0) continue;
if (!w) {
w = i, delt = Norm(a[i] - tmp + mod);
for (int j = i; j; --j) ans.f.emplace_back(0);
continue;
} poly now = ans;
u64 mult = 1ll * (a[i] - tmp + mod) * qp(delt, mod - 2) % mod;
if (ans.size() < lst.size() + i - w) ans.resize(lst.size() + i - w);
ans[i - w - 1] += mult;
if (ans[i - w - 1] >= mod) ans[i - w - 1] -= mod;
for (int j = 0; j < lst.size(); ++j) ans[i - w + j] = (ans[i - w + j] - 1ll * mult * lst[j] % mod + mod) % mod;
if (now.size() - i < lst.size() - w) lst = now, w = i, delt = (a[i] - tmp + mod) % mod;
} return ans.f.emplace(ans.f.begin(), 0), ans;
}
inline int recur_by_bm(u64 n, int k, poly a) {
poly f = BM(k, a);
if (f.size() == 2)
return 1ll * a[0] * qp(f[1], n - 1) % mod;
return linear_recur(n, f.degree(), f, a);
}
namespace _PR_base {
int order, mxdeg;
poly P[18];
poly lagrange(poly a0, const int& v) {
int n = a0.size() - 1;
assert(!(v <= n));
assert(!(Norm(v + n) <= n));
for (int i = 0; i <= n; i++) {
a0[i] = 1ll * a0[i] * gifc(i) % mod * gifc(n - i) % mod;
if ((n - i) & 1) a0[i] = Norm(mod - a0[i]);
} poly prf(2 * n + 2), ivp(2 * n + 2);
prf[0] = 1;
for (int i = 0; i <= 2 * n; i++) prf[i + 1] = 1ll * prf[i] * Norm(v - n + i) % mod;
ivp[2 * n + 1] = qp(prf[2 * n + 1], mod - 2);
for (int i = 2 * n; i >= 0; i--) ivp[i] = 1ll * ivp[i + 1] * Norm(v - n + i) % mod;
poly f(2 * n + 1), ret(n + 1);
for (int i = 0; i <= 2 * n; i++) f[i] = 1ll * ivp[i + 1] * prf[i] % mod;
f *= a0;
for (int i = 0; i <= n; i++) ret[i] = f[i + n];
for (int i = 0; i <= n; i++) ret[i] = 1ll * ret[i] * ivp[i] % mod * prf[i + n + 1] % mod;
return ret;
}
poly B[18][18], B2, tmpZ;
vector<u64> tmpM[18][18];
int calc(const u64& n, poly a) {
int s = (int)ceil(sqrt(1. * (n - order) / mxdeg)); s = 1 << lg(s);
// while (order + s * s * mxdeg <= n) s <<= 1;
a.rev();
for (int i = 0; i < order; ++ i)
for (int j = 0; j < order; ++ j)
B[i][j].redegree(mxdeg);
poly tmpv(mxdeg + 1, 0);
for (int i = 0; i <= mxdeg; ++ i)
tmpv[i] = Norm(mod - P[0].eval(order + i));
for (int i = 0; i < order; ++ i)
for (int j = 0; j <= mxdeg; ++ j) {
B[i][0][j] = P[i + 1].eval(order + j);
if (i > 0) B[i - 1][i][j] = tmpv[j];
}
for (int t = 2; t <= s; t <<= 1) {
for (int i = 0; i < order; ++ i) for (int j = 0; j < order; ++ j) {
auto tmp = lagrange(B[i][j], (1ll * mxdeg * (t >> 1) + 1) % mod);
B[i][j].f.insert(B[i][j].end(), tmp.begin(), tmp.end());
tmp = lagrange(B[i][j], (1ll * mxdeg * t + 2) % mod);
B[i][j].f.insert(B[i][j].end(), tmp.begin(), tmp.end());
tmpM[i][j].clear(); tmpM[i][j].resize(mxdeg * t + 1);
}
for (int i = 0; i < order; ++ i) for (int j = 0; j < order; ++ j)
for (int k = 0; k < order; ++ k) for (int v = 0; v <= mxdeg * t; ++ v)
tmpM[i][k][v] += 1ll * B[i][j][v << 1] * B[j][k][v << 1 | 1];
for (int i = 0; i < order; ++ i) for (int j = 0; j < order; ++ j) {
B[i][j].resize(tmpM[i][j].size());
for (int k = 0; k < B[i][j].size(); ++ k) B[i][j][k] = tmpM[i][j][k] % mod;
}
}
for (int i = 0; i < (n - order) / s; ++ i) {
vector<ull> tmp(order, 0);
for (int j = 0; j < order; ++ j) for (int k = 0; k < order; ++ k)
tmp[k] += 1ll * B[j][k][i] * a[j];
for (int j = 0; j < order; ++ j) a[j] = tmp[j] % mod;
}
for (int i = (n - order) / s * s + order; i <= n; ++ i) {
ull tmp = 0;
for (int j = 0; j < order; ++ j) tmp += 1ll * P[j + 1].eval(i) * a[j];
int tmp2 = Norm(mod - P[0].eval(i));
for (int j = order - 1; j; -- j) a[j] = 1ll * a[j - 1] * tmp2 % mod;
a[0] = tmp % mod;
}
B2.redegree(mxdeg);
for (int i = 0; i <= mxdeg; ++ i)
B2[i] = Norm(mod - P[0].eval(order + i));
for (int t = 2; t <= s; t <<= 1) {
auto tmp = lagrange(B2, (1ll * mxdeg * (t >> 1) + 1) % mod);
B2.f.insert(B2.end(), tmp.begin(), tmp.end());
tmp = lagrange(B2, (1ll * mxdeg * t + 2) % mod);
B2.f.insert(B2.end(), tmp.begin(), tmp.end());
tmpZ.resize(0); tmpZ.resize(mxdeg * t + 1);
for (int v = 0; v <= mxdeg * t; ++ v)
tmpZ[v] = 1ll * B2[v << 1] * B2[v << 1 | 1] % mod;
B2 = tmpZ;
}
int ans = 1;
for (int i = 0; i < (n - order) / s; ++ i)
ans = 1ll * ans * B2[i] % mod;
for (int i = (n - order) / s * s + order; i <= n; ++ i)
ans = 1ll * ans * Norm(mod - P[0].eval(i)) % mod;
return 1ll * a[0] * qp(ans, mod - 2) % mod;
}
inline int p_recur(const u64& n, const int& m, const int& d, const poly& a, const poly* P) {
/* m 阶整式递推,max deg P_i = d,满足 \sum_{k = 0}^m a_{n - k} P_k(n) = 0,初值给 m 个:a_0, ..., a_{m - 1},要求算 a_n */
if (n <= a.degree()) return a[n];
if (d == 0) {
poly f(m + 1);
for (int i = 0; i <= m; ++ i) f[i] = P[i][0];
int ivv = qp(mod - f[0], mod - 2);
for (int i = 1; i <= m; ++ i) f[i] = 1ll * f[i] * ivv % mod;
return linear_recur(n, m, f, a);
}
_PR_base :: order = m, _PR_base :: mxdeg = d;
for (int i = 0; i <= m; ++ i) _PR_base :: P[i] = P[i], _PR_base :: P[i].shrink();
return _PR_base :: calc(n, topoly(a.split(m - 1)));
}
inline int p_recur(const u64& n, const int& m, const poly& a, const poly* P) {
int d = 0;
for (int i = 0; i <= m; ++ i) d = max(d, P[i].size() - 1);
return p_recur(n, m, d, a, P);
}
inline int p_recur(const u64& n, const poly& a, const vector<poly>& P) {
int m = (int)P.size() - 1, d = 0;
for (int i = 0; i <= m; ++ i) d = max(d, P[i].size() - 1);
return p_recur(n, m, d, a, P.data());
}
} using _PR_base :: p_recur;
namespace ODE_Automaton {
struct FastMod {
int m; ll b;
inline void init(int _m = 1) { m = _m; if (m == 0) m = 1; b = ((lll)1 << 64) / m; }
FastMod(int _m = 1) { init(_m); }
inline int operator()(ll a) { ll q = ((lll)a * b) >> 64; a -= q * m; if (a >= m) a -= m; return a; }
} Mod(mod);
struct Z {
u32 v;
Z(u32 v = 0) : v(v) {}
Z(int v) : v(Norm(Mod(v) + mod)) { }
Z(long long v) : v(Norm(Mod(v) + mod)) { }
inline friend Z operator+(const Z& lhs, const Z &rhs) { return Norm(lhs.v + rhs.v); }
inline friend Z operator+(const Z& lhs, const int &rhs) { return Norm(lhs.v + rhs); }
inline friend Z operator+(const int& lhs, const Z& rhs) { return Norm(lhs + rhs.v); }
inline friend Z operator-(const Z& lhs, const Z &rhs) { return Norm(lhs.v + mod - rhs.v); }
inline friend Z operator-(const Z& lhs, const int &rhs) { return Norm(lhs.v - rhs + mod); }
inline friend Z operator-(const int& lhs, const Z& rhs) { return Norm(lhs - rhs.v + mod); }
Z operator-() const { return Norm(mod - v); }
inline Z inv() const { return qp(*this, mod - 2); };
inline friend Z operator*(const Z& lhs, const Z& rhs) { return Mod(1ll * lhs.v * rhs.v); }
inline friend Z operator*(const Z& lhs, const int &rhs) { return Mod(1ll * lhs.v * rhs); }
inline friend Z operator*(const int& lhs, const Z& rhs) { return Mod(1ll * lhs * rhs.v); }
inline friend Z operator/(const Z& lhs, const Z &rhs) { return Mod(1ll * lhs.v * rhs.inv().v); }
inline friend Z operator/(const Z& lhs, const int &rhs) { return Mod(1ll * lhs.v * qp(rhs, mod - 2)); }
inline friend Z operator/(const int& lhs, const Z& rhs) { return Mod(1ll * lhs * rhs.inv().v); }
operator u32() const { return v; }
inline friend ostream &operator<< (ostream &out, const Z &x) { return out << x.v; }
};
inline Z &operator+=(Z &lhs, const Z &rhs) { return lhs = lhs + rhs; }
inline Z &operator-=(Z &lhs, const Z &rhs) { return lhs = lhs - rhs; }
inline Z &operator*=(Z &lhs, const Z &rhs) { return lhs = lhs * rhs; }
inline Z &operator/=(Z &lhs, const Z &rhs) { return lhs = lhs / rhs; }
struct opoly : vector<Z> {
opoly(const int& n = 1, const Z& val = 0) : vector(n, val) {}
opoly(const initializer_list<value_type> &il) : vector(il) {}
opoly(const vector<Z> &il) : vector(il) {}
inline int degree() const { return (int) size() - 1; }
inline bool shrink() { int k = size(); while (k && !at(k - 1)) --k; resize(k); return k; }
inline void redegree(const size_t& n) { resize(n + 1); }
inline opoly operator-() const { opoly ret(size()); for (int i = 0; i < size(); ++i) ret[i] = -at(i); return ret; }
inline operator poly() const { poly ret(size()); for (int i = 0; i < (int)size(); ++ i) ret[i] = u32(at(i)); return ret; }
inline friend opoly operator*(const opoly &a, const opoly &b) {
int n = a.degree(), m = b.degree();
if (n == -1 || m == -1) return opoly();
opoly c(n + m + 1);
for (int i = 0; i <= n + m; ++i)
for (int j = max(0, i - m); j <= min(i, n); ++j)
c[i] += a[j] * b[i - j];
return c;
}
inline friend opoly operator*(const opoly &a, const Z &z) { opoly c(a); for (Z &x : c) x *= z; return c; }
inline friend opoly operator*(const Z &z, const opoly &a) { opoly c(a); for (Z &x : c) x *= z; return c; }
inline friend opoly operator+(const opoly &a, const opoly &b) {
opoly c(max(a.size(), b.size()));
for (int i = 0; i < a.size(); ++i) c[i] += a[i];
for (int i = 0; i < b.size(); ++i) c[i] += b[i];
return c;
}
inline friend opoly operator-(const opoly &a, const opoly &b) { return a + -b; }
inline friend opoly operator+(const opoly &a, const Z &z) { opoly c(a); c[0] += z; return c; }
inline friend opoly operator+(const Z &z, const opoly &a) { opoly c(a); c[0] += z; return c; }
inline friend opoly operator-(const opoly &a, const Z &z) { opoly c(a); c[0] -= z; return c; }
inline friend opoly operator-(const Z &z, const opoly &a) { opoly c(a); c[0] -= z; return c; }
inline friend bool operator==(const opoly &a, const opoly &b) {
if (a.size() != b.size()) return false;
for (int i = 0; i < a.size(); ++ i) if (a[i] != b[i]) return false;
return true;
}
opoly deri() const {
if (empty()) return *this;
opoly a(*this);
for (int i = 1; i < a.size(); ++i) a[i - 1] = a[i] * i;
a.pop_back();
return a;
}
Z eval(const Z &z) const {
Z v = 0;
for (int i = degree(); i >= 0; --i) v = v * z + at(i);
return v;
}
};
template <typename _vi>
inline opoly topoly(const _vi& a) {
opoly ret(a.size());
for (int i = 0; i < a.size(); ++ i)
ret[i].v = a[i];
return ret;
}
inline opoly gcd(opoly a, opoly b) {
if (!a.shrink()) return b;
if (!b.shrink()) return a;
if (a.size() < b.size()) swap(a, b);
while (b.shrink()) {
Z in = b.back().inv();
for (Z &x : b) x *= in;
int n = a.degree(), m = b.degree();
for (int i = n; i >= m; --i) {
for (int j = 1; j <= m; ++j)
a[i - j] -= a[i] * b[m - j];
a[i] = 0;
} swap(a, b);
} return a.shrink(), a;
}
inline opoly div(const opoly& _a, const opoly& _b) {
opoly a(_a), b(_b);
Z in = b.back().inv();
for (Z &x : b) x *= in;
int n = a.degree(), m = b.degree();
opoly ret(n - m + 1);
for (int i = n; i >= m; --i) {
ret[i - m] = a[i] * b[m];
for (int j = 1; j <= m; ++j)
a[i - j] -= a[i] * b[m - j];
} for (Z &x : ret) x = x * in;
return ret;
}
inline opoly operator/ (const opoly& _a, const opoly& _b) { return div(_a, _b); }
inline opoly& operator/= (opoly& _a, const opoly& _b) { _a = div(_a, _b); return _a; }
struct pfrac {
opoly x, y;
pfrac(const opoly &x = opoly(), const opoly &y = {Z(1)}) : x(x), y(y) {}
void shrink() {
y.shrink();
if (!x.shrink()) { y = opoly{Z(1)}; return; }
opoly g = gcd(x, y);
x /= g, y /= g;
}
inline pfrac operator+(const pfrac &rhs) const { pfrac ret = pfrac(x * rhs.y + y * rhs.x, y * rhs.y); ret.shrink(); return ret; }
inline pfrac operator-() const { pfrac ret = pfrac(-x, y); ret.shrink(); return ret; }
inline pfrac operator-(const pfrac &rhs) const { pfrac ret = *this + -rhs; ret.shrink(); return ret; }
inline pfrac operator*(const pfrac &rhs) const { pfrac ret = pfrac(x * rhs.x, y * rhs.y); ret.shrink(); return ret; }
// inline pfrac operator*(const Z &rhs) const { pfrac ret = pfrac(x * rhs, y * rhs); ret.shrink(); return ret; } // ?
inline pfrac inv() const { pfrac ret = pfrac(y, x); ret.shrink(); return ret; }
inline pfrac operator/(const pfrac &rhs) const { pfrac ret = *this * rhs.inv(); ret.shrink(); return ret; }
bool operator==(const pfrac &rhs) const { return x * rhs.y == y * rhs.x; }
bool operator!=(const pfrac &rhs) const { return !operator==(rhs); }
pfrac deri() const { pfrac ret = pfrac(x.deri() * y - y.deri() * x, y * y); ret.shrink(); return ret; }
};
struct Q_Basis {
int dim, id;
vector<vector<pfrac> > basis, augment;
Q_Basis(int dim) : dim(dim), id(), basis(dim), augment(dim) {}
vector<pfrac> insert(vector<pfrac> vec) {
vector<pfrac> tmp(dim + 1);
tmp[id++] = pfrac({Z(1)});
for (int i = 0; i < dim; ++i) {
if (vec[i] != pfrac()) {
if (basis[i].empty()) {
for (int j = i + 1; j < dim; ++j) {
vec[j] = vec[j] / vec[i];
vec[j].shrink();
}
for (int j = 0; j < id; ++j) {
tmp[j] = tmp[j] / vec[i];
tmp[j].shrink();
}
vec[i] = pfrac({Z(1)});
basis[i] = vec;
augment[i] = tmp;
return {};
} else {
for (int j = i + 1; j < dim; ++j)
vec[j] = vec[j] - vec[i] * basis[i][j];
for (int j = 0; j < id; ++j)
tmp[j] = tmp[j] - vec[i] * augment[i][j];
vec[i] = pfrac();
}
}
} return tmp;
}
};
using PRec = vector<opoly>;
using ODE_base = vector<opoly>;
struct ODE {
ODE_base ode;
ODE(const int& n = 1, const opoly& val = {0}) : ode(n, val) {}
ODE(const initializer_list<opoly> &il) : ode(il) {}
inline int size() const { return (int)ode.size(); }
inline int degree() const { return size() - 1; }
inline opoly& operator[](int x) { return ode[x]; }
inline opoly operator[](int x) const { return ode[x]; }
inline ODE& resize(int x) { return ode.resize(x), *this; }
inline ODE& redegree(int x) { return ode.resize(x + 1), *this; }
inline ODE_base::iterator begin() { return ode.begin(); }
inline ODE_base::iterator end() { return ode.end(); }
void shrink() {
opoly g = ode[0];
for (opoly &x : ode) x.shrink(), g = gcd(g, x);
for (opoly &x : ode) if (!x.empty()) x = div(x, g);
}
ODE deri() const {
ODE _ode(*this);
_ode.resize(_ode.size() + 1);
for (int i = (int) _ode.size() - 2; i >= 0; --i) {
_ode[i + 1] = _ode[i + 1] + _ode[i];
_ode[i] = _ode[i].deri();
} return _ode;
}
ODE theta() const {
ODE _ode(deri());
for (int i = 0; i < _ode.size(); ++i) _ode[i] = _ode[i] * opoly{Z(), Z(1)};
return _ode;
}
PRec _rec;
vector<Z> coef;
inline PRec getPRec() {
shrink();
int tmp = numeric_limits<int>::max();
int n = degree(), m = numeric_limits<int>::min();
for (int i = 0; i <= n; ++i) {
if (ode[i].empty()) continue;
m = max(m, (int) ode[i].size() - 1 - i);
int j = 0;
while (ode[i][j] == 0) ++j;
tmp = min(tmp, j - i);
} m -= tmp;
PRec rec(m + 1, opoly(n + 1)); opoly fall{Z(1)};
for (int i = 0; i <= n; ++i) {
opoly coef = fall;
for (int j = 0; j < (int) ode[i].size() - i - tmp; ++j) {
if (j + i + tmp >= 0) rec[j] = rec[j] + coef * ode[i][j + i + tmp];
coef = div(coef * opoly{-Z(i + j), Z(1)}, opoly{-Z(j), Z(1)});
} fall = fall * opoly{-Z(i), Z(1)};
}
for (int i = 0; i <= m; ++i) rec[i].shrink();
return _rec = rec;
}
int prf(int n) {
coef.resize(n + 1);
for (int i = 0; i <= n; ++i)
coef[i] = _rec[0].eval(i);
int r = 0;
for (int i = n; i; --i)
if (coef[i] == 0) {
r = i;
break;
}
return r;
}
opoly post(opoly init) {
int m = init.size();
auto invs = [&](const opoly &vec) {
opoly prf(vec.size()), ret(vec.size());
prf[0] = 1;
for (int i = 1; i < vec.size(); ++i) prf[i] = prf[i - 1] * (vec[i - 1] == 0 ? Z(1) : vec[i - 1]);
// Z tot = accumulate(vec.begin(), vec.end(), Z(1), multiplies<Z>()).inv();
// for (int i = (int) vec.size() - 1; i >= 0; --i) ret[i] = tot * prf[i], tot *= vec[i];
Z tot = Z(1);
for (auto v : vec) if (v.v != 0) tot *= v;
tot = tot.inv();
for (int i = (int) vec.size() - 1; i >= 0; --i)
if (vec[i].v != 0) ret[i] = tot * prf[i], tot *= vec[i];
return ret;
};
auto nvs = invs(vector<Z>(coef.begin() + m, coef.end()));
init.resize(coef.size());
for (int i = m; i < coef.size(); ++i) {
for (int j = 1; j < min(i + 1, (int) _rec.size()); ++j)
init[i] += init[i - j] * _rec[j].eval(i);
init[i] = init[i] * -nvs[i - m];
} return init;
}
poly recur(const int& n, const poly& a0) {
getPRec();
prf(n);
opoly ret(a0.size());
for (int i = 0; i < a0.size(); ++ i) ret[i].v = a0[i];
if (n <= ret.degree()) return ret.redegree(n), ret;
return post(ret);
}
vector<poly> trans_poly() {
vector<poly> ret(_rec.size(), poly());
for (int i = 0; i < _rec.size(); ++ i)
_rec[i].shrink(), ret[i] = _rec[i];
return ret;
}
inline friend ODE operator+(const ODE &op, const ODE &oq) {
int n = op.degree(), m = oq.degree();
Q_Basis basis(n + m);
vector<pfrac> pd(n + 1), qd(m + 1);
pd[0] = qd[0] = pfrac({Z(1)});
for (int dim = 0; dim <= n + m; ++dim) {
vector<pfrac> vec(n + m);
copy(pd.begin(), pd.begin() + n, vec.begin());
copy(qd.begin(), qd.begin() + m, vec.begin() + n);
auto ret = basis.insert(vec);
if (!ret.empty()) {
ODE ode(dim + 1); opoly prod = {Z(1)};
for (int i = 0; i < dim; ++i) prod = prod * ret[i].y;
ode[dim] = prod;
for (int i = 0; i < dim; ++i) ode[i] = ret[i].x * div(prod, ret[i].y);
ode.shrink();
return ode;
} pd[n] = qd[m] = pfrac();
for (int j = n - 1; j >= 0; --j) pd[j + 1] = pd[j + 1] + pd[j], pd[j] = pd[j].deri();
for (int j = m - 1; j >= 0; --j) qd[j + 1] = qd[j + 1] + qd[j], qd[j] = qd[j].deri();
for (int j = 0; j < n; ++j) pd[j] = pd[j] - pd[n] * op[j] / op[n], pd[j].shrink();
for (int j = 0; j < m; ++j) qd[j] = qd[j] - qd[m] * oq[j] / oq[m], qd[j].shrink();
}
}
inline friend ODE operator*(const ODE &op, const ODE &oq) {
int n = op.size() - 1, m = oq.size() - 1;
Q_Basis basis(n * m);
vector<vector<pfrac> > p(n + 1, vector<pfrac>(m + 1));
p[0][0] = pfrac({Z(1)});
for (int dim = 0; dim <= n * m; ++dim) {
vector<pfrac> vec(n * m);
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
vec[i * m + j] = p[i][j];
auto ret = basis.insert(vec);
if (!ret.empty()) {
ODE ode(dim + 1); opoly prod = {Z(1)};
for (int i = 0; i < dim; ++i) prod = prod * ret[i].y;
ode[dim] = prod;
for (int i = 0; i < dim; ++i) ode[i] = ret[i].x * div(prod, ret[i].y);
ode.shrink();
return ode;
}
for (int i = 0; i < n; ++i) p[i][m] = pfrac();
for (int j = 0; j < m; ++j) p[n][j] = pfrac();
for (int i = n - 1; i >= 0; --i)
for (int j = m - 1; j >= 0; --j) {
p[i + 1][j] = p[i + 1][j] + p[i][j];
p[i][j + 1] = p[i][j + 1] + p[i][j];
p[i][j] = p[i][j].deri();
}
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
p[i][j] = p[i][j] - p[n][j] * op[i] / op[n] - p[i][m] * oq[j] / oq[m], p[i][j].shrink();
}
}
inline ODE composite(pfrac q) const {
q.shrink();
int n = ode.size() - 1;
vector<vector<pfrac>> tri(n + 1, vector<pfrac>(n + 1));
tri[0][0] = pfrac({Z(1)});
pfrac d = q.deri();
d.shrink();
for (int i = 0; i < n; ++i) {
for (int j = 0; j <= i; ++j) {
tri[i + 1][j] = tri[i + 1][j] + tri[i][j].deri();
tri[i + 1][j + 1] = tri[i][j] * d;
} for (int j = 0; j <= i + 1; ++j) tri[i + 1][j].shrink();
} vector<pfrac> vec(n + 1);
for (int i = 0; i <= n; ++i)
for (int j = ode[i].degree(); j >= 0; --j) vec[i] = vec[i] * q + pfrac({ode[i][j]}), vec[i].shrink();
for (int i = n; i >= 0; --i) {
vec[i] = vec[i] / tri[i][i], vec[i].shrink();
for (int j = 0; j < i; ++j) vec[j] = vec[j] - vec[i] * tri[i][j];
} opoly prod = opoly{Z(1)};
for (int i = 0; i <= n; ++i) prod = prod * vec[i].y;
ODE ret(n + 1);
for (int i = 0; i <= n; ++i) ret[i] = vec[i].x * div(prod, vec[i].y);
return ret.shrink(), ret;
}
};
ODE linear_add(ODE a, ODE b) {
if (a.size() < b.size()) swap(a, b);
for (int i = 0; i < b.size(); ++i) a[i] = a[i] + b[i];
return a;
}
ODE scalar_mul(ODE ode, const Z &z) {
for (int i = 0; i < ode.size(); ++i)
ode[i] = ode[i] * z;
return ode;
}
ostream &operator<<(ostream &out, const Z &q) { return out << q.v; }
ostream &operator<<(ostream &out, const opoly &p) {
if (p.empty()) return out << 0;
out << p[0]; for (int i = 1; i < p.size(); ++i)
out << " + " << p[i] << "x^" << i;
return out;
}
ostream &operator<<(ostream &out, const pfrac &q) { return out << '(' << q.x << ") / (" << q.y << ')'; }
ostream &operator<<(ostream &out, const ODE &ode) {
out << "(" << ode[0] << ")F";
for (int i = 1; i < ode.size(); ++i) {
out << " + (" << ode[i] << ")F^{(" << i << ")}";
} return out << " = 0";
}
template<class T> ostream &operator<<(ostream &out, const vector<T> &v) {
if (!v.empty()) {
out << v.front();
for (int i = 1; i < v.size(); ++i) out << ' ' << v[i];
} return out;
}
ostream &operator>>(ostream &in, const Z &q) { return in >> q.v; }
template<class T> istream &operator>>(istream &is, vector<T> &v) { for (T &x : v) is >> x; return is; }
const ODE ODE_EXP = {{-Z(1)}, {Z(1)} };
const ODE ODE_LN = {{Z()}, {-Z(1)}, {Z(1), -Z(1)} };
ODE ode_power(const Z &k) { return ODE{{-Z(k)}, {Z(), Z(1)}}; }
ODE ode_pfrac(const pfrac &a) { return ode_power(1).composite(a); }
ODE ode_pFq(const vector<Z> &a, const vector<Z> &b) {
ODE l = {{Z(1)}}, r = l;
for (int x : a) l = linear_add(l.theta(), scalar_mul(l, x));
for (int x : b) r = linear_add(r.theta(), scalar_mul(r, x - 1));
ODE ret = linear_add(r.deri(), scalar_mul(l, - Z(1)));
return ret.shrink(), ret;
}
} using namespace ODE_Automaton;
} using namespace plugins;
不使用ull优化的整式递推
namespace plugins {
poly _S1R_solve(const int& n) {
if (n == 0) return poly(1, 1);
int mid = n >> 1;
poly f = _S1R_solve(mid);
f.resize(mid + 1);
poly A = f.shift(mid), B(mid + 1);
for (int i = 0; i <= mid; ++i) B[i] = f[i];
A *= B, f.resize(n + 1);
A.redegree(n);
if (n& 1) for (int i = 0; i <= n; ++i)
f[i] = ((i ? A[i - 1] : 0) + 1ll * (n - 1) * A[i]) % mod;
else for (int i = 0; i <= n; ++i)
f[i] = A[i];
return f;
}
inline poly stirling2_row(const int& n) {
poly A(n + 1), B(n + 1);
for (int i = 0; i <= n; i++)
A[i] = (i& 1 ? mod - gifc(i) : gifc(i)), B[i] = 1ll * qp(i, n) * gifc(i) % mod;
return (A * B).split(n);
}
inline poly stirling2_col(const int& n, const int& k) {
poly f(n + 1);
for(int i = 1; i <= n; ++ i) f[i] = gifc(i);
f = f.pow(k);
for(int i = 1; i <= n; ++ i) f[i] = 1ll * f[i] * gfac(i) % mod * gifc(k) % mod;
return f;
}
inline poly stirling1_row(const int& n) { return _S1R_solve(n); }
inline poly stirling1_col(const int& n, const int& k) {
poly f(n + 1);
f[0] = 1, f[1] = mod - 1;
f = f.inv().ln().pow(k);
for(int i = 1; i <= n; ++ i) f[i] = 1ll * f[i] * gfac(i) % mod * gifc(k) % mod;
return f;
}
inline poly eulerian_col(const int& n, const int& k) {
poly f1(max(k, n) + 1), f2(max(k, n) + 1), xex(n + 1), ekx(n + 1), ek1x(n + 1);
for(int i = 0; i < n; ++ i) {
if (i& 1) xex[i + 1] = mod - gifc(i);
else xex[i + 1] = gifc(i);
}
int _c1 = 1, _c2 = 1;
for(int i = 0; i <= n; ++ i) {
ekx[i] = 1ll * _c1 * gifc(i) % mod;
ek1x[i] = 1ll * _c2 * gifc(i) % mod;
_c1 = 1ll * _c1 * k % mod;
_c2 = 1ll * _c2 * (k + 1) % mod;
}
for(int i = 0; i <= k; ++ i) f1[i] = 1ll * qp(mod + i - k - 1, i) * gifc(i) % mod;
for(int i = 0; i < k; ++ i) f2[i] = 1ll * qp(mod - k + i, i) * gifc(i) % mod;
f1 = ek1x * f1.composite(xex);
f2 = ekx * f2.composite(xex);
f1 -= f2; f1.resize(n);
for(int i = 0; i < n; ++ i) f1[i] = 1ll * f1[i] * gfac(i) % mod;
return f1;
}
inline poly SEQ(const poly& A) { return (1 - A).inv(); }
inline poly MSET(const poly& A) {
poly ret(A);
for (int i = 2; i < A.size(); ++i)
for (int j = 1; i * j < A.size(); ++j)
ret[i * j] = (ret[i * j] + 1ll * ginv(i) * A[j]) % mod;
return ret.exp();
}
inline poly Exp(const poly& A) { return MSET(A); }
inline poly Ln(poly f) {
f[0] = 1, f = f.ln();
for (int i = 1; i < f.size(); ++i) f[i] = 1ll * f[i] * i % mod;
poly prime(f.size() + 1), mu(f.size() + 1), ret(f.size()); mu[1] = 1;
vector<bool> vis(f.size() + 1); int cnt = 0;
for (int i = 2; i <= f.size(); ++i) {
if (!vis[i]) prime[++cnt] = i, mu[i] = mod - 1;
for (int j = 1; j <= cnt and i * prime[j] <= f.size(); ++j) {
vis[i * prime[j]] = 1;
if (i % prime[j] == 0) break;
mu[i * prime[j]] = (mu[i] == 0 ? 0 : mod - mu[i]);
}
}
for (int i = 1; i < f.size(); ++i)
for (int j = 1; i * j < f.size(); ++j)
ret[i * j] = (ret[i * j] + 1ll * f[i] * mu[j]) % mod;
for (int i = 1; i < ret.size(); ++i) if (ret[i]) ret[i] = 1ll * ret[i] * ginv(i) % mod;
ret[0] = 0;
return ret;
}
inline int _R_Div(poly F, poly G, u64 n) {
int len = max(F.size(), G.size());
int m = 1, o = 0;
while (m < len) m <<= 1, ++o;
F.resize(1 << o + 1), G.resize(1 << o + 1);
while (n > m) {
ntt(F.data(), o + 1), ntt(G.data(), o + 1);
for (int i = 0; i < m * 2; ++i) F[i] = 1ll * F[i] * G[i ^ 1] % mod;
for (int i = 0; i < m; ++i) G[i] = 1ll * G[i << 1] * G[i << 1 | 1] % mod;
intt(F.data(), o + 1), intt(G.data(), o);
for (int i = 0, j = n& 1; i < len; i++, j += 2) F[i] = F[j];
for (int i = len, ed = 1 << o + 1; i < ed; ++i) F[i] = G[i] = 0;
n >>= 1;
} G.resize(m), G = G.inv();
int s = n; n = F.size() - 1, m = G.size() - 1;
int a = max(0, s - m), b = min(s, n), ans = 0;
for (int i = a; i <= b; ++i)
ans = (ans + 1ll * F[i] * G[s - i]) % mod;
return ans;
}
inline int linear_recur(u64 n, int k, poly f, poly a) {
poly F(k + 1); F[k] = 1; assert(a.size() >= k); a.resize(k);
for (int i = 1; i <= k; ++i) F[k - i] = (f[i] == 0 ? 0 : mod - f[i]);
F.rev(); f = (a * F).split(a.degree());
return _R_Div(f, F, n);
}
inline poly BM(int n, poly a) {
a.f.emplace(a.f.begin(), 0);
poly ans, lst; int w = 0; u64 delt = 0;
for (int i = 1; i <= n; ++i) {
u64 tmp = 0;
for (int j = 0; j < ans.size(); ++j) tmp = (tmp + 1ll * a[i - j - 1] * ans[j]) % mod;
if ((a[i] - tmp + mod) % mod == 0) continue;
if (!w) {
w = i, delt = Norm(a[i] - tmp + mod);
for (int j = i; j; --j) ans.f.emplace_back(0);
continue;
} poly now = ans;
u64 mult = 1ll * (a[i] - tmp + mod) * qp(delt, mod - 2) % mod;
if (ans.size() < lst.size() + i - w) ans.resize(lst.size() + i - w);
ans[i - w - 1] += mult;
if (ans[i - w - 1] >= mod) ans[i - w - 1] -= mod;
for (int j = 0; j < lst.size(); ++j) ans[i - w + j] = (ans[i - w + j] - 1ll * mult * lst[j] % mod + mod) % mod;
if (now.size() - i < lst.size() - w) lst = now, w = i, delt = (a[i] - tmp + mod) % mod;
} return ans.f.emplace(ans.f.begin(), 0), ans;
}
inline int recur_by_bm(u64 n, int k, poly a) {
poly f = BM(k, a);
if (f.size() == 2)
return 1ll * a[0] * qp(f[1], n - 1) % mod;
return linear_recur(n, f.degree(), f, a);
}
namespace mod_poly {
struct FastMod {
int m; ll b;
inline void init(int _m = 1) { m = _m; if (m == 0) m = 1; b = ((lll)1 << 64) / m; }
FastMod(int _m = 1) { init(_m); }
inline int operator()(ll a) { ll q = ((lll)a * b) >> 64; a -= q * m; if (a >= m) a -= m; return a; }
} Mod(mod);
struct Z {
u32 v;
Z(u32 v = 0) : v(v) {}
Z(int v) : v(Norm(Mod(v) + mod)) { }
Z(long long v) : v(Norm(Mod(v) + mod)) { }
inline friend Z operator+(const Z& lhs, const Z &rhs) { return Norm(lhs.v + rhs.v); }
inline friend Z operator+(const Z& lhs, const int &rhs) { return Norm(lhs.v + rhs); }
inline friend Z operator+(const int& lhs, const Z& rhs) { return Norm(lhs + rhs.v); }
inline friend Z operator-(const Z& lhs, const Z &rhs) { return Norm(lhs.v + mod - rhs.v); }
inline friend Z operator-(const Z& lhs, const int &rhs) { return Norm(lhs.v - rhs + mod); }
inline friend Z operator-(const int& lhs, const Z& rhs) { return Norm(lhs - rhs.v + mod); }
Z operator-() const { return Norm(mod - v); }
inline Z inv() const { return qp(*this, mod - 2); };
inline friend Z operator*(const Z& lhs, const Z& rhs) { return Mod(1ll * lhs.v * rhs.v); }
inline friend Z operator*(const Z& lhs, const int &rhs) { return Mod(1ll * lhs.v * rhs); }
inline friend Z operator*(const int& lhs, const Z& rhs) { return Mod(1ll * lhs * rhs.v); }
inline friend Z operator/(const Z& lhs, const Z &rhs) { return Mod(1ll * lhs.v * rhs.inv().v); }
inline friend Z operator/(const Z& lhs, const int &rhs) { return Mod(1ll * lhs.v * qp(rhs, mod - 2)); }
inline friend Z operator/(const int& lhs, const Z& rhs) { return Mod(1ll * lhs * rhs.inv().v); }
operator u32() const { return v; }
inline friend ostream &operator<< (ostream &out, const Z &x) { return out << x.v; }
};
inline Z &operator+=(Z &lhs, const Z &rhs) { return lhs = lhs + rhs; }
inline Z &operator-=(Z &lhs, const Z &rhs) { return lhs = lhs - rhs; }
inline Z &operator*=(Z &lhs, const Z &rhs) { return lhs = lhs * rhs; }
inline Z &operator/=(Z &lhs, const Z &rhs) { return lhs = lhs / rhs; }
struct opoly : vector<Z> {
opoly(const int& n = 1, const Z& val = 0) : vector(n, val) {}
opoly(const initializer_list<value_type> &il) : vector(il) {}
opoly(const vector<Z> &il) : vector(il) {}
inline int degree() const { return (int) size() - 1; }
inline bool shrink() { int k = size(); while (k && !at(k - 1)) --k; resize(k); return k; }
inline void redegree(const size_t& n) { resize(n + 1); }
inline void rev() { reverse(begin(), end()); }
inline opoly operator-() const { opoly ret(size()); for (int i = 0; i < size(); ++i) ret[i] = -at(i); return ret; }
inline operator poly() const { poly ret(size()); for (int i = 0; i < (int)size(); ++ i) ret[i] = u32(at(i)); return ret; }
inline friend opoly operator*(const opoly &a, const opoly &b) {
int n = a.degree(), m = b.degree();
if (n == -1 || m == -1) return opoly();
opoly c(n + m + 1);
for (int i = 0; i <= n + m; ++i)
for (int j = max(0, i - m); j <= min(i, n); ++j)
c[i] += a[j] * b[i - j];
return c;
}
inline friend opoly operator*(const opoly &a, const Z &z) { opoly c(a); for (Z &x : c) x *= z; return c; }
inline friend opoly operator*(const Z &z, const opoly &a) { opoly c(a); for (Z &x : c) x *= z; return c; }
inline friend opoly operator+(const opoly &a, const opoly &b) {
opoly c(max(a.size(), b.size()));
for (int i = 0; i < a.size(); ++i) c[i] += a[i];
for (int i = 0; i < b.size(); ++i) c[i] += b[i];
return c;
}
inline friend opoly operator-(const opoly &a, const opoly &b) { return a + -b; }
inline friend opoly operator+(const opoly &a, const Z &z) { opoly c(a); c[0] += z; return c; }
inline friend opoly operator+(const Z &z, const opoly &a) { opoly c(a); c[0] += z; return c; }
inline friend opoly operator-(const opoly &a, const Z &z) { opoly c(a); c[0] -= z; return c; }
inline friend opoly operator-(const Z &z, const opoly &a) { opoly c(a); c[0] -= z; return c; }
inline friend bool operator==(const opoly &a, const opoly &b) {
if (a.size() != b.size()) return false;
for (int i = 0; i < a.size(); ++ i) if (a[i] != b[i]) return false;
return true;
}
opoly deri() const {
if (empty()) return *this;
opoly a(*this);
for (int i = 1; i < a.size(); ++i) a[i - 1] = a[i] * i;
a.pop_back();
return a;
}
Z eval(const Z &z) const {
Z v = 0;
for (int i = degree(); i >= 0; --i) v = v * z + at(i);
return v;
}
poly trans_poly() {
poly ret(size());
for (int i = 0; i < size(); ++ i) ret[i] = u32(at(i));
return ret;
}
};
template <typename _vi>
inline opoly topoly(const _vi& a) {
opoly ret(a.size());
for (int i = 0; i < a.size(); ++ i)
ret[i].v = a[i];
return ret;
}
inline opoly gcd(opoly a, opoly b) {
if (!a.shrink()) return b;
if (!b.shrink()) return a;
if (a.size() < b.size()) swap(a, b);
while (b.shrink()) {
Z in = b.back().inv();
for (Z &x : b) x *= in;
int n = a.degree(), m = b.degree();
for (int i = n; i >= m; --i) {
for (int j = 1; j <= m; ++j)
a[i - j] -= a[i] * b[m - j];
a[i] = 0;
} swap(a, b);
} return a.shrink(), a;
}
inline opoly div(const opoly& _a, const opoly& _b) {
opoly a(_a), b(_b);
Z in = b.back().inv();
for (Z &x : b) x *= in;
int n = a.degree(), m = b.degree();
opoly ret(n - m + 1);
for (int i = n; i >= m; --i) {
ret[i - m] = a[i] * b[m];
for (int j = 1; j <= m; ++j)
a[i - j] -= a[i] * b[m - j];
} for (Z &x : ret) x = x * in;
return ret;
}
inline opoly operator/ (const opoly& _a, const opoly& _b) { return div(_a, _b); }
inline opoly& operator/= (opoly& _a, const opoly& _b) { _a = div(_a, _b); return _a; }
ostream &operator<<(ostream &out, const opoly &p) {
if (p.empty()) return out << 0;
out << p[0]; for (int i = 1; i < p.size(); ++i)
out << " + " << p[i] << "x^" << i;
return out;
}
template<class T> istream &operator>>(istream &is, vector<T> &v) { for (T &x : v) is >> x; return is; }
}
namespace _PR_base {
using namespace mod_poly;
int order, mxdeg;
vector<opoly> P;
opoly lagrange(opoly a0, const Z& v) {
int n = a0.size() - 1;
assert(!(v.v <= n)); assert(!((v + n).v <= n));
for (int i = 0; i <= n; i++) {
a0[i] = a0[i] * Z(gifc(i)) * Z(gifc(n - i));
if ((n - i) & 1) a0[i] = - a0[i];
} opoly prf(2 * n + 2), ivp(2 * n + 2);
prf[0] = 1;
for (int i = 0; i <= 2 * n; i++) prf[i + 1] = prf[i] * (v - n + i);
ivp[2 * n + 1] = qp(prf[2 * n + 1], mod - 2);
for (int i = 2 * n; i >= 0; i--) ivp[i] = ivp[i + 1] * (v - n + i);
opoly f(2 * n + 1), ret(n + 1);
for (int i = 0; i <= 2 * n; i++) f[i] = ivp[i + 1] * prf[i];
f = topoly(f.trans_poly() * a0.trans_poly());
for (int i = 0; i <= n; i++) ret[i] = f[i + n];
for (int i = 0; i <= n; i++) ret[i] = ret[i] * ivp[i] * prf[i + n + 1];
return ret;
}
vector<vector<opoly>> B, tmpM;
opoly B2, tmpZ;
int calc(const u64& n, opoly a) {
int s = (int)ceil(sqrt(1. * (n - order) / mxdeg)); s = 1 << lg(s);
// while (order + s * s * mxdeg <= n) s <<= 1;
a.rev();
for (int i = 0; i < order; ++ i) for (int j = 0; j < order; ++ j) B[i][j].redegree(mxdeg);
poly tmpv(mxdeg + 1, 0);
for (int i = 0; i <= mxdeg; ++ i) tmpv[i] = - P[0].eval(order + i);
for (int i = 0; i < order; ++ i) for (int j = 0; j <= mxdeg; ++ j) {
B[i][0][j] = P[i + 1].eval(order + j);
if (i > 0) B[i - 1][i][j] = tmpv[j];
}
tmpM.resize(order); for (int i = 0; i < order; ++ i) tmpM[i].resize(order);
for (int t = 2; t <= s; t <<= 1) {
for (int i = 0; i < order; ++ i) for (int j = 0; j < order; ++ j) {
auto tmp = lagrange(B[i][j], Z(mxdeg) * Z(t >> 1) + 1);
B[i][j].insert(B[i][j].end(), tmp.begin(), tmp.end());
tmp = lagrange(B[i][j], Z(mxdeg) * Z(t) + 2);
B[i][j].insert(B[i][j].end(), tmp.begin(), tmp.end());
tmpM[i][j].clear(); tmpM[i][j].resize(mxdeg * t + 1);
}
for (int i = 0; i < order; ++ i) for (int j = 0; j < order; ++ j)
for (int k = 0; k < order; ++ k) for (int v = 0; v <= mxdeg * t; ++ v)
tmpM[i][k][v] += B[i][j][v << 1] * B[j][k][v << 1 | 1];
for (int i = 0; i < order; ++ i) for (int j = 0; j < order; ++ j) {
B[i][j].resize(tmpM[i][j].size());
for (int k = 0; k < B[i][j].size(); ++ k) B[i][j][k] = tmpM[i][j][k];
}
}
for (int i = 0; i < (n - order) / s; ++ i) {
opoly tmp(order, 0);
for (int j = 0; j < order; ++ j) for (int k = 0; k < order; ++ k)
tmp[k] += B[j][k][i] * a[j];
for (int j = 0; j < order; ++ j) a[j] = tmp[j];
}
for (int i = (n - order) / s * s + order; i <= n; ++ i) {
Z tmp = 0;
for (int j = 0; j < order; ++ j) tmp += P[j + 1].eval(i) * a[j];
Z tmp2 = - P[0].eval(i);
for (int j = order - 1; j; -- j) a[j] = a[j - 1] * tmp2;
a[0] = tmp;
}
B2.redegree(mxdeg);
for (int i = 0; i <= mxdeg; ++ i) B2[i] = - P[0].eval(order + i);
for (int t = 2; t <= s; t <<= 1) {
auto tmp = lagrange(B2, Z(mxdeg) * Z(t >> 1) + 1);
B2.insert(B2.end(), tmp.begin(), tmp.end());
tmp = lagrange(B2, Z(mxdeg) * Z(t) + 2);
B2.insert(B2.end(), tmp.begin(), tmp.end());
tmpZ.resize(0); tmpZ.resize(mxdeg * t + 1);
for (int v = 0; v <= mxdeg * t; ++ v)
tmpZ[v] = B2[v << 1] * B2[v << 1 | 1];
B2 = tmpZ;
}
Z ans = 1;
for (int i = 0; i < (n - order) / s; ++ i) ans = ans * B2[i];
for (int i = (n - order) / s * s + order; i <= n; ++ i) ans = ans * (- P[0].eval(i));
return (a[0] * qp(ans, mod - 2)).v;
}
inline int p_recur(const u64& n, const int& m, const int& d, const poly& a, const poly* P) {
/* m 阶整式递推,max deg P_i = d,满足 \sum_{k = 0}^m a_{n - k} P_k(n) = 0,初值给 m 个:a_0, ..., a_{m - 1},要求算 a_n */
if (n <= a.degree()) return a[n];
if (d == 0) {
poly f(m + 1);
for (int i = 0; i <= m; ++ i) f[i] = P[i][0];
int ivv = qp(mod - f[0], mod - 2);
for (int i = 1; i <= m; ++ i) f[i] = 1ll * f[i] * ivv % mod;
return linear_recur(n, m, f, a);
}
_PR_base :: order = m, _PR_base :: mxdeg = d, _PR_base :: P.resize(m + 1), _PR_base :: B.resize(m + 1);
for (int i = 0; i <= m; ++ i) _PR_base :: B[i].resize(m + 1);
for (int i = 0; i <= m; ++ i) _PR_base :: P[i] = topoly(P[i]), _PR_base :: P[i].shrink();
return _PR_base :: calc(n, topoly(a.split(m - 1)));
}
inline int p_recur(const u64& n, const int& m, const poly& a, const poly* P) {
int d = 0;
for (int i = 0; i <= m; ++ i) d = max(d, P[i].size() - 1);
return p_recur(n, m, d, a, P);
}
inline int p_recur(const u64& n, const poly& a, const vector<poly>& P) {
int m = (int)P.size() - 1, d = 0;
for (int i = 0; i <= m; ++ i) d = max(d, P[i].size() - 1);
return p_recur(n, m, d, a, P.data());
}
} using _PR_base :: p_recur;
namespace ODE_Automaton {
using namespace mod_poly;
struct pfrac {
opoly x, y;
pfrac(const opoly &x = opoly(), const opoly &y = {Z(1)}) : x(x), y(y) {}
void shrink() {
y.shrink();
if (!x.shrink()) { y = opoly{Z(1)}; return; }
opoly g = gcd(x, y);
x /= g, y /= g;
}
inline pfrac operator+(const pfrac &rhs) const { pfrac ret = pfrac(x * rhs.y + y * rhs.x, y * rhs.y); ret.shrink(); return ret; }
inline pfrac operator-() const { pfrac ret = pfrac(-x, y); ret.shrink(); return ret; }
inline pfrac operator-(const pfrac &rhs) const { pfrac ret = *this + -rhs; ret.shrink(); return ret; }
inline pfrac operator*(const pfrac &rhs) const { pfrac ret = pfrac(x * rhs.x, y * rhs.y); ret.shrink(); return ret; }
// inline pfrac operator*(const Z &rhs) const { pfrac ret = pfrac(x * rhs, y * rhs); ret.shrink(); return ret; } // ?
inline pfrac inv() const { pfrac ret = pfrac(y, x); ret.shrink(); return ret; }
inline pfrac operator/(const pfrac &rhs) const { pfrac ret = *this * rhs.inv(); ret.shrink(); return ret; }
bool operator==(const pfrac &rhs) const { return x * rhs.y == y * rhs.x; }
bool operator!=(const pfrac &rhs) const { return !operator==(rhs); }
pfrac deri() const { pfrac ret = pfrac(x.deri() * y - y.deri() * x, y * y); ret.shrink(); return ret; }
};
struct Q_Basis {
int dim, id;
vector<vector<pfrac> > basis, augment;
Q_Basis(int dim) : dim(dim), id(), basis(dim), augment(dim) {}
vector<pfrac> insert(vector<pfrac> vec) {
vector<pfrac> tmp(dim + 1);
tmp[id++] = pfrac({Z(1)});
for (int i = 0; i < dim; ++i) {
if (vec[i] != pfrac()) {
if (basis[i].empty()) {
for (int j = i + 1; j < dim; ++j) {
vec[j] = vec[j] / vec[i];
vec[j].shrink();
}
for (int j = 0; j < id; ++j) {
tmp[j] = tmp[j] / vec[i];
tmp[j].shrink();
}
vec[i] = pfrac({Z(1)});
basis[i] = vec;
augment[i] = tmp;
return {};
} else {
for (int j = i + 1; j < dim; ++j)
vec[j] = vec[j] - vec[i] * basis[i][j];
for (int j = 0; j < id; ++j)
tmp[j] = tmp[j] - vec[i] * augment[i][j];
vec[i] = pfrac();
}
}
} return tmp;
}
};
using PRec = vector<opoly>;
using ODE_base = vector<opoly>;
struct ODE {
ODE_base ode;
ODE(const int& n = 1, const opoly& val = {0}) : ode(n, val) {}
ODE(const initializer_list<opoly> &il) : ode(il) {}
inline int size() const { return (int)ode.size(); }
inline int degree() const { return size() - 1; }
inline opoly& operator[](int x) { return ode[x]; }
inline opoly operator[](int x) const { return ode[x]; }
inline ODE& resize(int x) { return ode.resize(x), *this; }
inline ODE& redegree(int x) { return ode.resize(x + 1), *this; }
inline ODE_base::iterator begin() { return ode.begin(); }
inline ODE_base::iterator end() { return ode.end(); }
void shrink() {
opoly g = ode[0];
for (opoly &x : ode) x.shrink(), g = gcd(g, x);
for (opoly &x : ode) if (!x.empty()) x = div(x, g);
}
ODE deri() const {
ODE _ode(*this);
_ode.resize(_ode.size() + 1);
for (int i = (int) _ode.size() - 2; i >= 0; --i) {
_ode[i + 1] = _ode[i + 1] + _ode[i];
_ode[i] = _ode[i].deri();
} return _ode;
}
ODE theta() const {
ODE _ode(deri());
for (int i = 0; i < _ode.size(); ++i) _ode[i] = _ode[i] * opoly{Z(), Z(1)};
return _ode;
}
PRec _rec;
vector<Z> coef;
inline PRec getPRec() {
shrink();
int tmp = numeric_limits<int>::max();
int n = degree(), m = numeric_limits<int>::min();
for (int i = 0; i <= n; ++i) {
if (ode[i].empty()) continue;
m = max(m, (int) ode[i].size() - 1 - i);
int j = 0;
while (ode[i][j] == 0) ++j;
tmp = min(tmp, j - i);
} m -= tmp;
PRec rec(m + 1, opoly(n + 1)); opoly fall{Z(1)};
for (int i = 0; i <= n; ++i) {
opoly coef = fall;
for (int j = 0; j < (int) ode[i].size() - i - tmp; ++j) {
if (j + i + tmp >= 0) rec[j] = rec[j] + coef * ode[i][j + i + tmp];
coef = div(coef * opoly{-Z(i + j), Z(1)}, opoly{-Z(j), Z(1)});
} fall = fall * opoly{-Z(i), Z(1)};
}
for (int i = 0; i <= m; ++i) rec[i].shrink();
return _rec = rec;
}
int prf(int n) {
coef.resize(n + 1);
for (int i = 0; i <= n; ++i)
coef[i] = _rec[0].eval(i);
int r = 0;
for (int i = n; i; --i)
if (coef[i] == 0) {
r = i;
break;
}
return r;
}
opoly post(opoly init) {
int m = init.size();
auto invs = [&](const opoly &vec) {
opoly prf(vec.size()), ret(vec.size());
prf[0] = 1;
for (int i = 1; i < vec.size(); ++i) prf[i] = prf[i - 1] * (vec[i - 1] == 0 ? Z(1) : vec[i - 1]);
// Z tot = accumulate(vec.begin(), vec.end(), Z(1), multiplies<Z>()).inv();
// for (int i = (int) vec.size() - 1; i >= 0; --i) ret[i] = tot * prf[i], tot *= vec[i];
Z tot = Z(1);
for (auto v : vec) if (v.v != 0) tot *= v;
tot = tot.inv();
for (int i = (int) vec.size() - 1; i >= 0; --i)
if (vec[i].v != 0) ret[i] = tot * prf[i], tot *= vec[i];
return ret;
};
auto nvs = invs(vector<Z>(coef.begin() + m, coef.end()));
init.resize(coef.size());
for (int i = m; i < coef.size(); ++i) {
for (int j = 1; j < min(i + 1, (int) _rec.size()); ++j)
init[i] += init[i - j] * _rec[j].eval(i);
init[i] = init[i] * -nvs[i - m];
} return init;
}
opoly recur(const int& n, const opoly& a0) {
getPRec();
prf(n);
opoly ret(a0.size());
for (int i = 0; i < a0.size(); ++ i) ret[i].v = a0[i].v;
if (n <= ret.degree()) return ret.redegree(n), ret;
return post(ret);
}
poly recur(const int& n, const poly& a0) {
getPRec();
prf(n);
opoly ret(a0.size());
for (int i = 0; i < a0.size(); ++ i) ret[i].v = a0[i];
if (n <= ret.degree()) return ret.redegree(n), ret;
return post(ret);
}
vector<poly> trans_poly() {
vector<poly> ret(_rec.size(), poly());
for (int i = 0; i < _rec.size(); ++ i)
_rec[i].shrink(), ret[i] = _rec[i];
return ret;
}
inline friend ODE operator+(const ODE &op, const ODE &oq) {
int n = op.degree(), m = oq.degree();
Q_Basis basis(n + m);
vector<pfrac> pd(n + 1), qd(m + 1);
pd[0] = qd[0] = pfrac({Z(1)});
for (int dim = 0; dim <= n + m; ++dim) {
vector<pfrac> vec(n + m);
copy(pd.begin(), pd.begin() + n, vec.begin());
copy(qd.begin(), qd.begin() + m, vec.begin() + n);
auto ret = basis.insert(vec);
if (!ret.empty()) {
ODE ode(dim + 1); opoly prod = {Z(1)};
for (int i = 0; i < dim; ++i) prod = prod * ret[i].y;
ode[dim] = prod;
for (int i = 0; i < dim; ++i) ode[i] = ret[i].x * div(prod, ret[i].y);
ode.shrink();
return ode;
} pd[n] = qd[m] = pfrac();
for (int j = n - 1; j >= 0; --j) pd[j + 1] = pd[j + 1] + pd[j], pd[j] = pd[j].deri();
for (int j = m - 1; j >= 0; --j) qd[j + 1] = qd[j + 1] + qd[j], qd[j] = qd[j].deri();
for (int j = 0; j < n; ++j) pd[j] = pd[j] - pd[n] * op[j] / op[n], pd[j].shrink();
for (int j = 0; j < m; ++j) qd[j] = qd[j] - qd[m] * oq[j] / oq[m], qd[j].shrink();
} return assert(0), ODE();
}
inline friend ODE operator*(const ODE &op, const ODE &oq) {
int n = op.size() - 1, m = oq.size() - 1;
Q_Basis basis(n * m);
vector<vector<pfrac> > p(n + 1, vector<pfrac>(m + 1));
p[0][0] = pfrac({Z(1)});
for (int dim = 0; dim <= n * m; ++dim) {
vector<pfrac> vec(n * m);
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
vec[i * m + j] = p[i][j];
auto ret = basis.insert(vec);
if (!ret.empty()) {
ODE ode(dim + 1); opoly prod = {Z(1)};
for (int i = 0; i < dim; ++i) prod = prod * ret[i].y;
ode[dim] = prod;
for (int i = 0; i < dim; ++i) ode[i] = ret[i].x * div(prod, ret[i].y);
ode.shrink();
return ode;
}
for (int i = 0; i < n; ++i) p[i][m] = pfrac();
for (int j = 0; j < m; ++j) p[n][j] = pfrac();
for (int i = n - 1; i >= 0; --i)
for (int j = m - 1; j >= 0; --j) {
p[i + 1][j] = p[i + 1][j] + p[i][j];
p[i][j + 1] = p[i][j + 1] + p[i][j];
p[i][j] = p[i][j].deri();
}
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
p[i][j] = p[i][j] - p[n][j] * op[i] / op[n] - p[i][m] * oq[j] / oq[m], p[i][j].shrink();
} return assert(0), ODE();
}
inline ODE composite(pfrac q) const {
q.shrink();
int n = ode.size() - 1;
vector<vector<pfrac>> tri(n + 1, vector<pfrac>(n + 1));
tri[0][0] = pfrac({Z(1)});
pfrac d = q.deri();
d.shrink();
for (int i = 0; i < n; ++i) {
for (int j = 0; j <= i; ++j) {
tri[i + 1][j] = tri[i + 1][j] + tri[i][j].deri();
tri[i + 1][j + 1] = tri[i][j] * d;
} for (int j = 0; j <= i + 1; ++j) tri[i + 1][j].shrink();
} vector<pfrac> vec(n + 1);
for (int i = 0; i <= n; ++i)
for (int j = ode[i].degree(); j >= 0; --j) vec[i] = vec[i] * q + pfrac({ode[i][j]}), vec[i].shrink();
for (int i = n; i >= 0; --i) {
vec[i] = vec[i] / tri[i][i], vec[i].shrink();
for (int j = 0; j < i; ++j) vec[j] = vec[j] - vec[i] * tri[i][j];
} opoly prod = opoly{Z(1)};
for (int i = 0; i <= n; ++i) prod = prod * vec[i].y;
ODE ret(n + 1);
for (int i = 0; i <= n; ++i) ret[i] = vec[i].x * div(prod, vec[i].y);
return ret.shrink(), ret;
}
};
ODE linear_add(ODE a, ODE b) {
if (a.size() < b.size()) swap(a, b);
for (int i = 0; i < b.size(); ++i) a[i] = a[i] + b[i];
return a;
}
ODE scalar_mul(ODE ode, const Z &z) {
for (int i = 0; i < ode.size(); ++i)
ode[i] = ode[i] * z;
return ode;
}
ostream &operator<<(ostream &out, const pfrac &q) { return out << '(' << q.x << ") / (" << q.y << ')'; }
ostream &operator<<(ostream &out, const ODE &ode) {
out << "(" << ode[0] << ")F";
for (int i = 1; i < ode.size(); ++i) {
out << " + (" << ode[i] << ")F^{(" << i << ")}";
} return out << " = 0";
}
template<class T> ostream &operator<<(ostream &out, const vector<T> &v) {
if (!v.empty()) {
out << v.front();
for (int i = 1; i < v.size(); ++i) out << ' ' << v[i];
} return out;
}
const ODE ODE_EXP = {{-Z(1)}, {Z(1)} };
const ODE ODE_LN = {{Z()}, {-Z(1)}, {Z(1), -Z(1)} };
ODE ode_power(const Z &k) { return ODE{{-Z(k)}, {Z(), Z(1)}}; }
ODE ode_pfrac(const pfrac &a) { return ode_power(1).composite(a); }
ODE ode_pFq(const vector<Z> &a, const vector<Z> &b) {
ODE l = {{Z(1)}}, r = l;
for (int x : a) l = linear_add(l.theta(), scalar_mul(l, x));
for (int x : b) r = linear_add(r.theta(), scalar_mul(r, x - 1));
ODE ret = linear_add(r.deri(), scalar_mul(l, - Z(1)));
return ret.shrink(), ret;
}
} using namespace ODE_Automaton;
} using namespace plugins;
在 ABC222H 的实现过程中,下方的整式递推板子会在数据极小时出问题。但板子本身似乎并无问题,目前未查明原因。速度较快。
code
namespace _PR_base {
int order, mxdeg;
struct _PR_M {
int a[15][15];
_PR_M() { memset(a, 0, sizeof a); }
inline int* operator[] (int i) { return a[i]; }
inline const int* operator[] (int i) const { return a[i]; }
inline friend _PR_M operator* (_PR_M a, _PR_M b) {
_PR_M ret; u64 tmp; /* ULL_MAX / ((mod - 1) * (mod - 1)) = 18 */
for (int i = 0; i < order; ++ i)
for (int j = 0; j < order; ++ j) {
tmp = 0;
for (int k = 0; k < order; ++ k)
tmp = tmp + 1ll * a[i][k] * b[k][j];
ret[i][j] = tmp % mod;
}
return ret;
}
inline void I() { for (int i = 0; i < order; ++ i) a[i][i] = 1; }
} ;
poly P[15];
inline _PR_M _PR_get(int x) {
_PR_M ret = _PR_M(); int p0 = P[0].eval(x + order);
for (int i = 0; i < order - 1; ++ i) ret[i + 1][i] = p0;
for (int i = 0; i < order; ++ i) ret[i][order - 1] = mod - P[order - i].eval(x + order);
return ret;
}
inline void _PR_lagrange_base(const _PR_M* F1, const int* F2, int n, int m, _PR_M* R1, int* R2, bool ck) {
/* [P5667] 给出 f(0), ..., f(n), 算出 f(m), ..., f(m + n),对 F2 和(若 ck 为真)每个 F1[i][j](保证 m > n) */
int k = n << 1 | 1, lgl = lg(3 * n), lim = 1 << lgl;
poly facm(n + 1), ifcm(n + 1);
facm[0] = 1;
for (int i = 0; i <= n; ++i) {
facm[0] = 1ll * facm[0] * Norm(m - n + i + mod) % mod;
ifcm[i] = 1ll * gifc(i) * gifc(n - i) % mod;
}
poly prf(k + 1), suf(k + 2);
prf[0] = suf[k + 1] = 1;
for (int i = 1; i <= k; ++i)
prf[i] = 1ll * prf[i - 1] * Norm(m - n + i - 1 + mod) % mod;
for (int i = k; i; --i)
suf[i] = 1ll * suf[i + 1] * Norm(m - n + i - 1 + mod) % mod;
poly inv_(k + 1), g(lim), f2(lim), f1(lim);
int mul = qp(prf[k], mod - 2);
for (int i = 1; i <= k; ++i) inv_[i] = 1ll * mul * prf[i - 1] % mod * suf[i + 1] % mod;
for (int i = 1; i <= n; ++i) facm[i] = 1ll * facm[i - 1] * (m + i) % mod * inv_[i] % mod;
for (int i = 0; i < k; ++i) g[i] = inv_[i + 1];
for (int i = k; i < lim; ++i) g[i] = 0;
for (int i = 0; i <= n; ++i) f2[i] = 1ll * ifcm[i] * ((n - i) & 1 ? mod - F2[i] : F2[i]) % mod;
for (int i = n + 1; i < lim; ++i) f2[i] = 0;
ntt(g.data(), lgl), ntt(f2.data(), lgl);
for (int i = 0; i < lim; ++i) f2[i] = 1ll * f2[i] * g[i] % mod;
intt(f2.data(), lgl);
for (int i = 0; i <= n; ++i) R2[i] = 1ll * f2[i + n] * facm[i] % mod;
if (!ck) return;
for (int i = 0; i < order; ++i) for (int j = 0; j < order; ++j) {
for (int t = 0; t <= n; ++t)
f1[t] = 1ll * ifcm[t] * ((n - t) & 1 ? mod - F1[t].a[i][j] : F1[t].a[i][j]) % mod;
for (int t = n + 1; t < lim; ++t) f1[t] = 0;
ntt(f1.data(), lgl);
for (int t = 0; t < lim; ++t) f1[t] = 1ll * f1[t] * g[t] % mod;
intt(f1.data(), lgl);
for (int t = 0; t <= n; ++t) R1[t].a[i][j] = 1ll * f1[t + n] * facm[t] % mod;
}
}
inline void _PR_lagrange(const _PR_M* F1, const int* F2, int n, int m, _PR_M* R1, int* R2, bool ck) {
/* 给出 f(0), ..., f(n), 算出 f(m), ..., f(m + n),对 F2 和(若 ck 为真)每个 F1[i][j] */
if (n < m) _PR_lagrange_base(F1, F2, n, m, R1, R2, ck);
else {
vector<_PR_M> tmp1(n - m + 1); vector<int> tmp2(n - m + 1);
for (int i = m; i <= n; ++ i) tmp1[i - m] = F1[i], tmp2[i - m] = F2[i];
for (int i = 0; i <= n - m; ++ i) R1[i] = tmp1[i], R2[i] = tmp2[i];
_PR_lagrange_base(F1, F2, m, n + 1, R1 + n - m + 1, R2 + n - m + 1, ck);
}
}
inline _PR_M _PR_calcM(int d, int x) {
_PR_M ret = _PR_get(x);
for (int i = 1; i < d; ++ i) ret = ret * _PR_get(x + i);
return ret;
}
inline int _PR_calcZ(int d, int x) {
int ret = P[0].eval(x);
for (int i = 1; i < d; ++ i) ret = 1ll * ret * P[0].eval(x + i) % mod;
return ret;
}
pair<_PR_M, int> _PR_whole(int s, int t) {
vector<_PR_M> f(2 * mxdeg * s + 5), fd(2 * mxdeg * s + 5);
vector<int> g(2 * mxdeg * s + 5), gd(2 * mxdeg * s + 5); int invs = qp(s, mod - 2);
for (int i = 0; i <= mxdeg; ++ i) f[i] = _PR_get(i * s), g[i] = P[0].eval(i * s);
int x = s, d = 1;
static int st[39]; int tp = 0;
while (x) st[++ tp] = x, x >>= 1; -- tp;
while (tp --) {
int kd = mxdeg * d;
_PR_lagrange(f.data(), g.data(), kd, kd + 1, f.data() + kd + 1, g.data() + kd + 1, 1);
g[kd << 1 | 1] = 0, f[kd << 1 | 1] = _PR_M();
_PR_lagrange(f.data(), g.data(), kd << 1, 1ll * d * invs % mod, fd.data(), gd.data(), 1);
for (int i = 0; i <= (kd << 1); ++ i) f[i] = f[i] * fd[i], g[i] = 1ll * g[i] * gd[i] % mod;
d <<= 1;
if (!(st[tp + 1] & 1)) continue;
kd = mxdeg * (d + 1);
for (int i = mxdeg * d + 1; i <= kd; ++ i) f[i] = _PR_calcM(d, i * s), g[i] = _PR_calcZ(d, i * s);
for (int i = 0; i <= kd; ++ i) f[i] = f[i] * _PR_get(i * s + d), g[i] = 1ll * g[i] * P[0].eval(i * s + d) % mod;
++ d;
} _PR_lagrange(f.data(), g.data(), mxdeg * s, 1ll * order * invs % mod, f.data(), g.data(), 0);
_PR_M r1; r1.I(); int r2 = 1;
for (int i = 0; i <= t; ++ i) r1 = r1 * f[i], r2 = 1ll * r2 * g[i] % mod;
return {r1, r2};
}
int calc(const u64& n, const poly& a) {
int tn = n - order + 1, s = (int)ceil(sqrt(1. * tn / mxdeg));
auto ans = _PR_whole(s, (tn - s) / s);
_PR_M mul = ans.first; int div = ans.second, ret = 0;
for (int i = (tn / s) * s; i < tn; ++ i) mul = mul * _PR_get(i), div = 1ll * div * P[0].eval(i + order) % mod;
for (int i = 0; i < order; ++ i) ret = (ret + 1ll * a[i] * mul[i][order - 1]) % mod;
return 1ll * ret * qp(div, mod - 2) % mod;
}
inline int p_recur(const u64& n, const int& m, const int& d, const poly& a, const poly* P) {
/* m 阶整式递推,max deg P_i = d,满足 \sum_{k = 0}^m a_{n - k} P_k(n) = 0,初值给 m 个:a_0, ..., a_{m - 1},要求算 a_n */
if (n <= a.degree()) return a[n];
if (d == 0) {
poly f(m + 1);
for (int i = 0; i <= m; ++ i) f[i] = P[i][0];
int ivv = qp(mod - f[0], mod - 2);
for (int i = 1; i <= m; ++ i) f[i] = 1ll * f[i] * ivv % mod;
return linear_recur(n, m, f, a);
}
_PR_base :: order = m, _PR_base :: mxdeg = d;
for (int i = 0; i <= m; ++ i) _PR_base :: P[i] = P[i], _PR_base :: P[i].shrink();
return _PR_base :: calc(n, topoly(a.split(m - 1)));
}
inline int p_recur(const u64& n, const int& m, const poly& a, const poly* P) {
int d = 0;
for (int i = 0; i <= m; ++ i) d = max(d, P[i].size() - 1);
return p_recur(n, m, d, a, P);
}
inline int p_recur(const u64& n, const poly& a, const vector<poly>& P) {
int m = (int)P.size() - 1, d = 0;
for (int i = 0; i <= m; ++ i) d = max(d, P[i].size() - 1);
return p_recur(n, m, d, a, P.data());
}
} using _PR_base :: p_recur;
以下是博客签名,与正文无关。
请按如下方式引用此页:
本文作者 joke3579,原文链接:https://www.cnblogs.com/joke3579/p/-/polynomial。
遵循 CC BY-NC-SA 4.0 协议。
请读者尽量不要在评论区发布与博客内文完全无关的评论,视情况可能删除。