preprocessing
二、标准化(Standardization),或者去除均值和方差进行缩放
公式为:(X-X_mean)/X_std 计算时对每个属性/每列分别进行.
将数据按其属性(按列进行)减去其均值,然后除以其方差。最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1。
首先说明下sklearn中preprocessing库里面的scale函数使用方法:
sklearn.preprocessing.scale(X, axis=0, with_mean=True,with_std=True,copy=True)
- X:数组或者矩阵
- axis:int类型,初始值为0,axis用来计算均值 means 和标准方差 standard deviations. 如果是0,则单独的标准化每个特征(列),如果是1,则标准化每个观测样本(行)。
- with_mean: boolean类型,默认为True,表示将数据均值规范到0
- with_std: boolean类型,默认为True,表示将数据方差规范到1
一个简单的例子
假设现在我构造一个数据集X,然后想要将其标准化。下面使用不同的方法来标准化X:
方法一:使用sklearn.preprocessing.scale()函数
方法说明:
- X.mean(axis=0)用来计算数据X每个特征的均值;
- X.std(axis=0)用来计算数据X每个特征的方差;
- preprocessing.scale(X)直接标准化数据X。
将代码整理到一个文件中:
from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
# calculate mean
X_mean = X.mean(axis=0)
# calculate variance
X_std = X.std(axis=0)
# standardize X
X1 = (X-X_mean)/X_std
# use function preprocessing.scale to standardize X
X_scale = preprocessing.scale(X)
最后X_scale的值和X1的值是一样的,前面是单独的使用数学公式来计算,主要是为了形成一个对比,能够更好的理解scale()方法。
方法2:sklearn.preprocessing.StandardScaler类
该方法也可以对数据X进行标准化处理,实例如下:
from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
scaler = preprocessing.StandardScaler()
X_scaled = scaler.fit_transform(X)
这两个方法得到最后的结果都是一样的。
三、将特征的取值缩小到一个范围(如0到1)
除了上述介绍的方法之外,另一种常用的方法是将属性缩放到一个指定的最大值和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类来实现。
使用这种方法的目的包括:
- 1、对于方差非常小的属性可以增强其稳定性;
- 2、维持稀疏矩阵中为0的条目。
下面将数据缩至0-1之间,采用MinMaxScaler函数
from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
min_max_scaler = preprocessing.MinMaxScaler()
X_minMax = min_max_scaler.fit_transform(X)
最后输出:
array([[ 0.5 , 0. , 1. ],
[ 1. , 0.5 , 0.33333333],
[ 0. , 1. , 0. ]])
测试用例:
>>> X_test = np.array([[ -3., -1., 4.]])
>>> X_test_minmax = min_max_scaler.transform(X_test)
>>> X_test_minmax
array([[-1.5 , 0. , 1.66666667]])
注意:这些变换都是对列进行处理。
当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min, max),此时应用的公式变为:
X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))
X_minmax=X_std/(X.max(axis=0)-X.min(axis=0))+X.min(axis=0))
四、正则化(Normalization)
正则化的过程是将每个样本缩放到单位范数(每个样本的范数为1),如果要使用如二次型(点积)或者其它核方法计算两个样本之间的相似性这个方法会很有用。
该方法是文本分类和聚类分析中经常使用的向量空间模型(Vector Space Model)的基础.
Normalization主要思想是对每个样本计算其p-范数,然后对该样本中每个元素除以该范数,这样处理的结果是使得每个处理后样本的p-范数(l1-norm,l2-norm)等于1。
方法1:使用sklearn.preprocessing.normalize()函数
>>> X = [[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')
>>> X_normalized
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])
方法2:sklearn.preprocessing.StandardScaler类
>>> normalizer = preprocessing.Normalizer().fit(X) # fit does nothing
>>> normalizer
Normalizer(copy=True, norm='l2')
然后使用正则化实例来转换样本向量:
>>> normalizer.transform(X)
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])
>>> normalizer.transform([[-1., 1., 0.]])
array([[-0.70..., 0.70..., 0. ...]])
两种方法都可以,效果是一样的。
五、二值化(Binarization)
特征的二值化主要是为了将数据特征转变成boolean变量。在sklearn中,sklearn.preprocessing.Binarizer函数可以实现这一功能。实例如下:
>>> X = [[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]
>>> binarizer = preprocessing.Binarizer().fit(X) # fit does nothing
>>> binarizer
Binarizer(copy=True, threshold=0.0)
>>> binarizer.transform(X)
array([[ 1., 0., 1.],
[ 1., 0., 0.],
[ 0., 1., 0.]])
Binarizer函数也可以设定一个阈值,结果数据值大于阈值的为1,小于阈值的为0,实例代码如下:
>>> binarizer = preprocessing.Binarizer(threshold=1.1)
>>> binarizer.transform(X)
array([[ 0., 0., 1.],
[ 1., 0., 0.],
[ 0., 0., 0.]])
六、缺失值处理
由于不同的原因,许多现实中的数据集都包含有缺失值,要么是空白的,要么使用NaNs或者其它的符号替代。这些数据无法直接使用scikit-learn分类器直接训练,所以需要进行处理。幸运地是,sklearn中的Imputer类提供了一些基本的方法来处理缺失值,如使用均值、中位值或者缺失值所在列中频繁出现的值来替换。
下面是使用均值来处理的实例:
>>> import numpy as np
>>> from sklearn.preprocessing import Imputer
>>> imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
>>> imp.fit([[1, 2], [np.nan, 3], [7, 6]])
Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0)
>>> X = [[np.nan, 2], [6, np.nan], [7, 6]]
>>> print(imp.transform(X))
[[ 4. 2. ]
[ 6. 3.666...]
[ 7. 6. ]]
Imputer类同样支持稀疏矩阵:
>>> import scipy.sparse as sp
>>> X = sp.csc_matrix([[1, 2], [0, 3], [7, 6]])
>>> imp = Imputer(missing_values=0, strategy='mean', axis=0)
>>> imp.fit(X)
Imputer(axis=0, copy=True, missing_values=0, strategy='mean', verbose=0)
>>> X_test = sp.csc_matrix([[0, 2], [6, 0], [7, 6]])
>>> print(imp.transform(X_test))
[[ 4. 2. ]
[ 6. 3.666...]
[ 7. 6. ]]
# ***coding:utf8***
import numpy as np
import pandas as pd
from sklearn import preprocessing
from sklearn.preprocessing import Imputer
feature=pd.read_csv('C:\Users\jiejiao\Desktop\\feature3.csv')
feature=feature.drop(['name','occupation'],axis=1)
# preprocessing.scale or scaler=preprocessing.StandarScaler()+scaler.fit_transform()
# 标准化,从此均值0,方差1
feature_mean=feature.mean()
feature_std=feature.std()
feature_scale=(feature-feature_mean)/feature_std
feature_scaled=preprocessing.scale(feature)
# print feature_scale-feature_scaled
# preprocessing.scale(x)=(x-x.mean)/x.std
feature_scaled1=preprocessing.StandardScaler().fit(feature)
scaler=preprocessing.StandardScaler()
feature_scaled1=scaler.fit_transform(feature)
# print feature_scaled-feature_scaled1
# scaler=preprocessing.StandardScaler()
# preprocessing.scale()=scaler.fit_transform()
# 缩放到0~1,这些都是列变换
X=np.array([
[1.,-1.,2.],
[2.,0.,0.],
[0.,1.,-1.]
])
min_max_scaler=preprocessing.MinMaxScaler()
X_minMax=min_max_scaler.fit_transform(X)
# print X_minMax
# 缩放到-1~1除以每列最大值
max_abs_scaler=preprocessing.MaxAbsScaler()
feature_maxabs=max_abs_scaler.fit_transform(feature)
# print feature_maxabs
# 正则化,每行范数变成1,NORM默认是2,也可以选1,是1范数,2范数的意思
X = [[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]]
X_normalized=preprocessing.normalize(X,norm='l2')
# print X_normalized
# 同样的
normalizer=preprocessing.Normalizer()
X_normalized1=normalizer.fit_transform(X)
# print X_normalized1-X_normalized
# 二值化binarization
binarizer=preprocessing.Binarizer(threshold=1.2)
X_binarized=binarizer.fit_transform(X)
# print X_binarized
#
# 独热编码onehot encoder:可以将分类特征转化成数值特征
enc=preprocessing.OneHotEncoder()
enc.fit([[0,0,3],[1,1,0],[0,2,1],[1,0,2]])
# print enc.transform([[0,1,3]]).toarray()
# Imputer缺失值处理,用fit的性质去补transform的缺失值
imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
imp.fit([[1,2],[np.nan,3],[7,6]])
X = [[np.nan, 2], [6, np.nan], [7, 6]]
print imp.transform(X)
# 增加多项式特征
from sklearn.preprocessing import PolynomialFeatures
x=np.arange(6).reshape(3,2)
poly=PolynomialFeatures(2)
print poly.fit_transform(x)
# The features of X have been transformed from (X_1, X_2) to (1, X_1, X_2, X_1^2, X_1X_2, X_2^2)
# In some cases, only interaction terms among features are required, and it can be gotten with the setting interaction_only=True:
xx=np.arange(9).reshape(3, 3)
poly = PolynomialFeatures(degree=3, interaction_only=True)
poly.fit_transform(xx)
# The features of X have been transformed from (X_1, X_2, X_3) to (1, X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3, X_1X_2X_3).