Advanced pandas
Advanced pandas
import numpy as np
import pandas as pd
Categorical Data
This section introduces the pandas Categorical
type.Using it will achieve better performance and memory use in some pandas operations.
Background and motivation
Frequently,a column in a table may contain repeated instances of a smaller set of distinct values. We have already seen functions like unique
and value_counts
,which enable us to extract the distinct values from an array and compute their freuencies respectively.
values=pd.Series(['apple','orange','apple','apple']*2)
values
0 apple
1 orange
2 apple
3 apple
4 apple
5 orange
6 apple
7 apple
dtype: object
pd.unique(values)
array(['apple', 'orange'], dtype=object)
pd.value_counts(values)
apple 6
orange 2
dtype: int64
Many data systems have developed specialized approaches for representing data with repeated values for more efficient storage and computation. In data warehousing, a best pratice is to use so-called dimension tables
containing the distinct values and storing the primary observations as integer keys referencing the dimension tatble.
values=pd.Series([0,1,0,0]*2)
dim=pd.Series(['apple','orange'])
dim.take(values)
0 apple
1 orange
0 apple
0 apple
0 apple
1 orange
0 apple
0 apple
dtype: object
We can use the take
method to restore the original Series of strings.
This representation as integers is called the categorical or dictionary-encoded representation.The array of distinct values can be called the categories,dictionary or levels of the data.In this blog, we will use the terms categorical and categories.The integer values that reference the categories are called the category codes or simply codes.
The categorical representation can yield significant performance improvements when you are doing analytics.You can also perform transformations on the categories while leaving the codes unmodified.Some example transformations that can be made at relatively low cost are:
- Renaming categories.
- Appending a new category without changing the order or position of the existing categories.
Categorical type in pandas
Pandas has a special Categorical
type for holding data that uses the integer-based categorical representation or encoding.
fruits=['apple','orange','apple','apple']*2
N=len(fruits)
df=pd.DataFrame({'fruit':fruits,
'basket_id':np.arange(N),
'count':np.random.randint(3,15,size=N),
'weight':np.random.uniform(0,4,size=N)},columns=['basket_id','fruit','count','weight'])
df
basket_id | fruit | count | weight | |
---|---|---|---|---|
0 | 0 | apple | 3 | 3.224342 |
1 | 1 | orange | 8 | 2.625838 |
2 | 2 | apple | 4 | 1.285304 |
3 | 3 | apple | 11 | 1.510722 |
4 | 4 | apple | 4 | 1.560894 |
5 | 5 | orange | 13 | 3.138222 |
6 | 6 | apple | 12 | 3.994037 |
7 | 7 | apple | 10 | 0.644615 |
df['fruit'] is an array of Python string objects.We can convert it to categorical by calling:
fruit_cat=df['fruit'].astype('category')
fruit_cat
0 apple
1 orange
2 apple
3 apple
4 apple
5 orange
6 apple
7 apple
Name: fruit, dtype: category
Categories (2, object): [apple, orange]
df['fruit']
0 apple
1 orange
2 apple
3 apple
4 apple
5 orange
6 apple
7 apple
Name: fruit, dtype: object
The values for fruit_cat
are not a Numpy array,but an instance of pandas.Categorical
:
c=fruit_cat.values
c
[apple, orange, apple, apple, apple, orange, apple, apple]
Categories (2, object): [apple, orange]
type(c)
pandas.core.arrays.categorical.Categorical
df['fruit'].values # df['fruit']'s values are Numpy array.
array(['apple', 'orange', 'apple', 'apple', 'apple', 'orange', 'apple',
'apple'], dtype=object)
df.values # df.values are also Numpy array
array([[0, 'apple', 3, 3.224342140640482],
[1, 'orange', 8, 2.625837611614019],
[2, 'apple', 4, 1.2853036490436986],
[3, 'apple', 11, 1.5107221991867759],
[4, 'apple', 4, 1.5608944958834634],
[5, 'orange', 13, 3.1382222188914577],
[6, 'apple', 12, 3.9940366021092872],
[7, 'apple', 10, 0.64461515110633]], dtype=object)
The Categorical
object has categories
and codes
attributes:
c.categories
Index(['apple', 'orange'], dtype='object')
c.codes
array([0, 1, 0, 0, 0, 1, 0, 0], dtype=int8)
c.categories.take(c.codes)
Index(['apple', 'orange', 'apple', 'apple', 'apple', 'orange', 'apple',
'apple'],
dtype='object')
- You can also create
pandas.Categorical
directly from other types of Python sequence:
my_categories=pd.Categorical(['foo','bar','baz','foo','bar'])
my_categories
[foo, bar, baz, foo, bar]
Categories (3, object): [bar, baz, foo]
- If you have obtained categorical encoded data from another source,you can use the alternative
from_codes
constructor:
categories=['foo','bar','baz','baz']
codes=[0,1,2,0,0,1,3]
my_cat_2=pd.Categorical.from_codes(codes,categories) # categories have to be unique
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-29-5368c7cbd53a> in <module>()
----> 1 my_cat_2=pd.Categorical.from_codes(codes,categories) # categories have to be unique
D:\Anaconda\lib\site-packages\pandas\core\arrays\categorical.py in from_codes(cls, codes, categories, ordered)
584 "codes need to be convertible to an arrays of integers")
585
--> 586 categories = CategoricalDtype.validate_categories(categories)
587
588 if len(codes) and (codes.max() >= len(categories) or codes.min() < -1):
D:\Anaconda\lib\site-packages\pandas\core\dtypes\dtypes.py in validate_categories(categories, fastpath)
322
323 if not categories.is_unique:
--> 324 raise ValueError('Categorical categories must be unique')
325
326 if isinstance(categories, ABCCategoricalIndex):
ValueError: Categorical categories must be unique
categories=['foo','bar','baz','baxz']
codes=[0,1,2,0,0,1,3]
pd.Categorical.from_codes(codes,categories)
[foo, bar, baz, foo, foo, bar, baxz]
Categories (4, object): [foo, bar, baz, baxz]
Unless explicitly specified,categorical conversion assume no specific ordering of the categories,so the categories
array may be in a different order depending on the ordering of the input data.When using from_codes
or any of the other constructors,you can indicate that the categories have a meaningful ordering.
ordered_cat=pd.Categorical.from_codes(codes,categories,ordered=True)
ordered_cat
[foo, bar, baz, foo, foo, bar, baxz]
Categories (4, object): [foo < bar < baz < baxz]
ordered_cat.codes
array([0, 1, 2, 0, 0, 1, 3], dtype=int8)
ordered_cat.categories
Index(['foo', 'bar', 'baz', 'baxz'], dtype='object')
Unordered categorical instance can be made ordered with as_ordered
:
As a last note,categorical data need not be strings,a categorical array can consist of any immutable value types:
pd.Categorical([(1,2),'a',3])
[(1, 2), a, 3]
Categories (3, object): [(1, 2), a, 3]
Computations with Categorical
Using Categorical
in pandas compared with the non-encoded version(like an array of strings) generally behaves the same way.Some parts of pandas,like the groupby
function,perform better when working with categories.There are also some functions that can utilize the ordered
flag.
Let's consider some random numeric data,and use the panda.qcut
binning function.This return pandas.Categorical
;We used pandas.cut
ealier but glossed over the details of how categoricals work.
np.random.seed(12345)
draws=np.random.randn(1000)
bins=pd.qcut(draws,4)
bins
[(-0.684, -0.0101], (-0.0101, 0.63], (-0.684, -0.0101], (-0.684, -0.0101], (0.63, 3.928], ..., (-0.0101, 0.63], (-0.684, -0.0101], (-2.9499999999999997, -0.684], (-0.0101, 0.63], (0.63, 3.928]]
Length: 1000
Categories (4, interval[float64]): [(-2.9499999999999997, -0.684] < (-0.684, -0.0101] < (-0.0101, 0.63] < (0.63, 3.928]]
bins.value_counts()
(-2.9499999999999997, -0.684] 250
(-0.684, -0.0101] 250
(-0.0101, 0.63] 250
(0.63, 3.928] 250
dtype: int64
pd.value_counts(bins)
(0.63, 3.928] 250
(-0.0101, 0.63] 250
(-0.684, -0.0101] 250
(-2.9499999999999997, -0.684] 250
dtype: int64
type(bins)
pandas.core.arrays.categorical.Categorical
While useful,the exact sample quartiles may be less useful for producing a report than quartile names.We can achieve this with the labels
argument to qcut
:
bins=pd.qcut(draws,4,labels=['Q1','Q2','Q3','Q4'])
bins
[Q2, Q3, Q2, Q2, Q4, ..., Q3, Q2, Q1, Q3, Q4]
Length: 1000
Categories (4, object): [Q1 < Q2 < Q3 < Q4]
bins.codes[:10]
array([1, 2, 1, 1, 3, 3, 2, 2, 3, 3], dtype=int8)
bins.categories
Index(['Q1', 'Q2', 'Q3', 'Q4'], dtype='object')
The labeled bins categorical does not contain information about the bin edges in the data,so we can use groupby
to extract some summary statistics:
bins=pd.Series(bins,name='quartile')
pd.Series(draws).groupby(bins).mean()
quartile
Q1 -1.215981
Q2 -0.362423
Q3 0.307840
Q4 1.261160
dtype: float64
results=(pd.Series(draws).groupby(bins).agg(['count','min','max','mean']).reset_index())
results
quartile | count | min | max | mean | |
---|---|---|---|---|---|
0 | Q1 | 250 | -2.949343 | -0.685484 | -1.215981 |
1 | Q2 | 250 | -0.683066 | -0.010115 | -0.362423 |
2 | Q3 | 250 | -0.010032 | 0.628894 | 0.307840 |
3 | Q4 | 250 | 0.634238 | 3.927528 | 1.261160 |
bins
0 Q2
1 Q3
2 Q2
3 Q2
4 Q4
5 Q4
6 Q3
7 Q3
8 Q4
9 Q4
10 Q4
11 Q1
12 Q3
13 Q3
14 Q4
15 Q4
16 Q1
17 Q2
18 Q4
19 Q2
20 Q2
21 Q3
22 Q4
23 Q1
24 Q2
25 Q3
26 Q3
27 Q3
28 Q3
29 Q4
..
970 Q2
971 Q1
972 Q2
973 Q4
974 Q3
975 Q1
976 Q1
977 Q2
978 Q2
979 Q3
980 Q3
981 Q1
982 Q3
983 Q4
984 Q2
985 Q4
986 Q1
987 Q4
988 Q1
989 Q3
990 Q1
991 Q4
992 Q1
993 Q4
994 Q2
995 Q3
996 Q2
997 Q1
998 Q3
999 Q4
Name: quartile, Length: 1000, dtype: category
Categories (4, object): [Q1 < Q2 < Q3 < Q4]
Better performance with categoricals
If you do a lot of analytics on a particular dataset,converting to categorical can yield substantial overall performance gains.A categorical version of a DataFrame column will often use significantly less memory,too.
N=10000000
draws=pd.Series(np.random.randn(N))
labels=pd.Series(['foo','bar','baz','qux']*(N//4))
12//5
2
12%5
2
categories=labels.astype('category')
labels.memory_usage()
80000080
categories.memory_usage()
10000272
So we can see that,Categorical
ueses less memory than Series
.While the conversion to category is not free,of course,but it is a one-time cost:
%time _=labels.astype('category')
Wall time: 400 ms
GroupBy operations can be significantly faster with categoricals because the underlying algoriths use the integer-based codes array instead of an array of strings.
Categorical methods
Series containing categorical data have several special methods similar to the Series.str
specialized string methods.This also provides convenient access to the categories and codes.
s=pd.Series(['a','b','c','d']*2)
cat_s=s.astype('category')
cat_s
0 a
1 b
2 c
3 d
4 a
5 b
6 c
7 d
dtype: category
Categories (4, object): [a, b, c, d]
The special attribute cat
provides access to categorical methods:
cat_s.cat.codes
0 0
1 1
2 2
3 3
4 0
5 1
6 2
7 3
dtype: int8
cat_s.values.codes
array([0, 1, 2, 3, 0, 1, 2, 3], dtype=int8)
cat_s.values.categories
Index(['a', 'b', 'c', 'd'], dtype='object')
cat_s.cat.categories
Index(['a', 'b', 'c', 'd'], dtype='object')
Suppose that we know the actual set of categories for this data extends beyond the four values observed in the data.We often use the set_categories
method to change them:
actual_categories=['a','b','c','d','e']
cat_s2=cat_s.cat.set_categories(actual_categories)
cat_s2
0 a
1 b
2 c
3 d
4 a
5 b
6 c
7 d
dtype: category
Categories (5, object): [a, b, c, d, e]
While it appears that the data is unchanged,the new categories will be reflected in operations that use them.For example,value_counts
respects the categories,if present:
cat_s.value_counts()
d 2
c 2
b 2
a 2
dtype: int64
cat_s2.value_counts()
d 2
c 2
b 2
a 2
e 0
dtype: int64
In large datasets,categoricals are often used as a convenient fool for memory savings and better performance.After you filter a large DataFrame or Series,many of the categories may not appear in the data.To help with this,we can use the remove_unused_categories
method to trim unobserved categories:
cat_s
0 a
1 b
2 c
3 d
4 a
5 b
6 c
7 d
dtype: category
Categories (4, object): [a, b, c, d]
cat_s3=cat_s[cat_s.isin(['a','b'])]
cat_s.isin(['a','b'])
0 True
1 True
2 False
3 False
4 True
5 True
6 False
7 False
dtype: bool
cat_s3
0 a
1 b
4 a
5 b
dtype: category
Categories (4, object): [a, b, c, d]
cat_s[[True,False,False,False,False,False,True,False]]
0 a
6 c
dtype: category
Categories (4, object): [a, b, c, d]
cat_s3.cat.remove_unused_categories()
0 a
1 b
4 a
5 b
dtype: category
Categories (2, object): [a, b]
Categorical methods for Series in pandas:
- add_categories---> Append new(unused) categories at end of existing categories
- as_ordered-------->Make categories ordered
- as_unordered----->Make categories unordered
- remove_categories--> Remove categories,setting any removed values to null
- remove_unused_categories-->Remove any category values which do not appear in the data
- rename_categories---->Replace categories with indicated set of new category names;cannot change the number of categories
- reorder_categories--->Behaves like rename_categories,but can also change the result to have ordered categories
- set_categories------->Replcace the categories with the indicated set of new categories;can add or remove categories
Creating dummy variables for modeling
When you are using statistics or machine learning tools,you will often transform categorical data into dummy variables,also known as one-hot encoding.This involves creating a DataFrame with a column for each distinct category;these columns contain 1s for occurrences of a given category and 0 otherwise;
cat_s=pd.Series(['a','b','c','d']*2,dtype='category')
The pandas.get_dummies
function converts this one-dimensional categorical data into a DataFrame containing the dummy variable:
pd.get_dummies(cat_s)
a | b | c | d | |
---|---|---|---|---|
0 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
2 | 0 | 0 | 1 | 0 |
3 | 0 | 0 | 0 | 1 |
4 | 1 | 0 | 0 | 0 |
5 | 0 | 1 | 0 | 0 |
6 | 0 | 0 | 1 | 0 |
7 | 0 | 0 | 0 | 1 |
Advanced GroupBy use
df
time | value | |
---|---|---|
0 | 2020-05-23 00:00:00 | 0 |
1 | 2020-05-23 00:01:00 | 1 |
2 | 2020-05-23 00:02:00 | 2 |
3 | 2020-05-23 00:03:00 | 3 |
4 | 2020-05-23 00:04:00 | 4 |
5 | 2020-05-23 00:05:00 | 5 |
6 | 2020-05-23 00:06:00 | 6 |
7 | 2020-05-23 00:07:00 | 7 |
8 | 2020-05-23 00:08:00 | 8 |
9 | 2020-05-23 00:09:00 | 9 |
10 | 2020-05-23 00:10:00 | 10 |
11 | 2020-05-23 00:11:00 | 11 |
12 | 2020-05-23 00:12:00 | 12 |
13 | 2020-05-23 00:13:00 | 13 |
14 | 2020-05-23 00:14:00 | 14 |
df.groupby('fruit').max()
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-113-79d22643c2e2> in <module>()
----> 1 df.groupby('fruit').max()
D:\Anaconda\lib\site-packages\pandas\core\generic.py in groupby(self, by, axis, level, as_index, sort, group_keys, squeeze, observed, **kwargs)
6663 return groupby(self, by=by, axis=axis, level=level, as_index=as_index,
6664 sort=sort, group_keys=group_keys, squeeze=squeeze,
-> 6665 observed=observed, **kwargs)
6666
6667 def asfreq(self, freq, method=None, how=None, normalize=False,
D:\Anaconda\lib\site-packages\pandas\core\groupby\groupby.py in groupby(obj, by, **kwds)
2150 raise TypeError('invalid type: %s' % type(obj))
2151
-> 2152 return klass(obj, by, **kwds)
2153
2154
D:\Anaconda\lib\site-packages\pandas\core\groupby\groupby.py in __init__(self, obj, keys, axis, level, grouper, exclusions, selection, as_index, sort, group_keys, squeeze, observed, **kwargs)
597 sort=sort,
598 observed=observed,
--> 599 mutated=self.mutated)
600
601 self.obj = obj
D:\Anaconda\lib\site-packages\pandas\core\groupby\groupby.py in _get_grouper(obj, key, axis, level, sort, observed, mutated, validate)
3289 in_axis, name, level, gpr = False, None, gpr, None
3290 else:
-> 3291 raise KeyError(gpr)
3292 elif isinstance(gpr, Grouper) and gpr.key is not None:
3293 # Add key to exclusions
KeyError: 'fruit'
Groupby transforms and 'unwrapped' groupbys
There is a built-in method called transform
,which is similar to apply
but imposes more constraints on the kind of function you can use:
- It can produce a scalar value to be broadcast to the shape of the group
- It can produce an object of the same shape as the input group
- It must not mutate its input
df=pd.DataFrame({'key':['a','b','c']*4,'value':np.arange(12)})
df
key | value | |
---|---|---|
0 | a | 0 |
1 | b | 1 |
2 | c | 2 |
3 | a | 3 |
4 | b | 4 |
5 | c | 5 |
6 | a | 6 |
7 | b | 7 |
8 | c | 8 |
9 | a | 9 |
10 | b | 10 |
11 | c | 11 |
g=df.groupby('key').value
g
<pandas.core.groupby.groupby.SeriesGroupBy object at 0x00000277954F00B8>
g.apply(np.mean)
key
a 4.5
b 5.5
c 6.5
Name: value, dtype: float64
g.apply(lambda x:x.mean())
key
a 4.5
b 5.5
c 6.5
Name: value, dtype: float64
g.apply(lambda x:x.max()-x.min()) # x represents the subgroup in group.
key
a 9
b 9
c 9
Name: value, dtype: int64
Suppose instead we wanted to produce a Series of the same shape as df['value']but with values replaced by the average grouped by 'key',we can pass the function lambda x:x.mean() to transform
:
g.transform(lambda x:x.mean())
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64
For built-in aggregation functions,we can pass a string alias as with the groupby agg
method:
g.transform('mean')
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64
Like apply
,transform
works with functions that return Series,but the result must be the same size as the input.
g.transform(lambda x:x*2)
0 0
1 2
2 4
3 6
4 8
5 10
6 12
7 14
8 16
9 18
10 20
11 22
Name: value, dtype: int32
def normalize(x):
return (x-x.mean())/x.std()
g.transform(normalize)
0 -1.161895
1 -1.161895
2 -1.161895
3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64
g.apply(normalize)
0 -1.161895
1 -1.161895
2 -1.161895
3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64
Built-in aggregate functions like 'mean' or 'sum' are often much faster than a general apply
function.Thses also have a fast patst when used with transform
.This allows us to perform a so-called unwrapped
group operation:
g.transform('mean')
0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5
Name: value, dtype: float64
(df['value']-g.transform('mean'))/g.transform('std')
0 -1.161895
1 -1.161895
2 -1.161895
3 -0.387298
4 -0.387298
5 -0.387298
6 0.387298
7 0.387298
8 0.387298
9 1.161895
10 1.161895
11 1.161895
Name: value, dtype: float64
Grouped time resampling
For time series,the resample
method is semantically a group operation based on a time intervalization.
N=15
times=pd.date_range('2020--5-23 00:00',freq='1min',periods=N)
df=pd.DataFrame({'time':times,
'value':np.arange(N)})
df
time | value | |
---|---|---|
0 | 2020-05-23 00:00:00 | 0 |
1 | 2020-05-23 00:01:00 | 1 |
2 | 2020-05-23 00:02:00 | 2 |
3 | 2020-05-23 00:03:00 | 3 |
4 | 2020-05-23 00:04:00 | 4 |
5 | 2020-05-23 00:05:00 | 5 |
6 | 2020-05-23 00:06:00 | 6 |
7 | 2020-05-23 00:07:00 | 7 |
8 | 2020-05-23 00:08:00 | 8 |
9 | 2020-05-23 00:09:00 | 9 |
10 | 2020-05-23 00:10:00 | 10 |
11 | 2020-05-23 00:11:00 | 11 |
12 | 2020-05-23 00:12:00 | 12 |
13 | 2020-05-23 00:13:00 | 13 |
14 | 2020-05-23 00:14:00 | 14 |
Here,we can index by 'time' and then resample:
df.set_index('time').resample('5min').count()
value | |
---|---|
time | |
2020-05-23 00:00:00 | 5 |
2020-05-23 00:05:00 | 5 |
2020-05-23 00:10:00 | 5 |
help(pd.DataFrame.resample)
Help on function resample in module pandas.core.generic:
resample(self, rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None)
Convenience method for frequency conversion and resampling of time
series. Object must have a datetime-like index (DatetimeIndex,
PeriodIndex, or TimedeltaIndex), or pass datetime-like values
to the on or level keyword.
Parameters
----------
rule : string
the offset string or object representing target conversion
axis : int, optional, default 0
closed : {'right', 'left'}
Which side of bin interval is closed. The default is 'left'
for all frequency offsets except for 'M', 'A', 'Q', 'BM',
'BA', 'BQ', and 'W' which all have a default of 'right'.
label : {'right', 'left'}
Which bin edge label to label bucket with. The default is 'left'
for all frequency offsets except for 'M', 'A', 'Q', 'BM',
'BA', 'BQ', and 'W' which all have a default of 'right'.
convention : {'start', 'end', 's', 'e'}
For PeriodIndex only, controls whether to use the start or end of
`rule`
kind: {'timestamp', 'period'}, optional
Pass 'timestamp' to convert the resulting index to a
``DateTimeIndex`` or 'period' to convert it to a ``PeriodIndex``.
By default the input representation is retained.
loffset : timedelta
Adjust the resampled time labels
base : int, default 0
For frequencies that evenly subdivide 1 day, the "origin" of the
aggregated intervals. For example, for '5min' frequency, base could
range from 0 through 4. Defaults to 0
on : string, optional
For a DataFrame, column to use instead of index for resampling.
Column must be datetime-like.
.. versionadded:: 0.19.0
level : string or int, optional
For a MultiIndex, level (name or number) to use for
resampling. Level must be datetime-like.
.. versionadded:: 0.19.0
Returns
-------
Resampler object
Notes
-----
See the `user guide
<http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling>`_
for more.
To learn more about the offset strings, please see `this link
<http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__.
Examples
--------
Start by creating a series with 9 one minute timestamps.
>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
Freq: T, dtype: int64
Downsample the series into 3 minute bins and sum the values
of the timestamps falling into a bin.
>>> series.resample('3T').sum()
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21
Freq: 3T, dtype: int64
Downsample the series into 3 minute bins as above, but label each
bin using the right edge instead of the left. Please note that the
value in the bucket used as the label is not included in the bucket,
which it labels. For example, in the original series the
bucket ``2000-01-01 00:03:00`` contains the value 3, but the summed
value in the resampled bucket with the label ``2000-01-01 00:03:00``
does not include 3 (if it did, the summed value would be 6, not 3).
To include this value close the right side of the bin interval as
illustrated in the example below this one.
>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00 3
2000-01-01 00:06:00 12
2000-01-01 00:09:00 21
Freq: 3T, dtype: int64
Downsample the series into 3 minute bins as above, but close the right
side of the bin interval.
>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64
Upsample the series into 30 second bins.
>>> series.resample('30S').asfreq()[0:5] #select first 5 rows
2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 1.0
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2.0
Freq: 30S, dtype: float64
Upsample the series into 30 second bins and fill the ``NaN``
values using the ``pad`` method.
>>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 0
2000-01-01 00:01:00 1
2000-01-01 00:01:30 1
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
Upsample the series into 30 second bins and fill the
``NaN`` values using the ``bfill`` method.
>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 1
2000-01-01 00:01:00 1
2000-01-01 00:01:30 2
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
Pass a custom function via ``apply``
>>> def custom_resampler(array_like):
... return np.sum(array_like)+5
>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00 8
2000-01-01 00:03:00 17
2000-01-01 00:06:00 26
Freq: 3T, dtype: int64
For a Series with a PeriodIndex, the keyword `convention` can be
used to control whether to use the start or end of `rule`.
>>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01',
freq='A',
periods=2))
>>> s
2012 1
2013 2
Freq: A-DEC, dtype: int64
Resample by month using 'start' `convention`. Values are assigned to
the first month of the period.
>>> s.resample('M', convention='start').asfreq().head()
2012-01 1.0
2012-02 NaN
2012-03 NaN
2012-04 NaN
2012-05 NaN
Freq: M, dtype: float64
Resample by month using 'end' `convention`. Values are assigned to
the last month of the period.
>>> s.resample('M', convention='end').asfreq()
2012-12 1.0
2013-01 NaN
2013-02 NaN
2013-03 NaN
2013-04 NaN
2013-05 NaN
2013-06 NaN
2013-07 NaN
2013-08 NaN
2013-09 NaN
2013-10 NaN
2013-11 NaN
2013-12 2.0
Freq: M, dtype: float64
For DataFrame objects, the keyword ``on`` can be used to specify the
column instead of the index for resampling.
>>> df = pd.DataFrame(data=9*[range(4)], columns=['a', 'b', 'c', 'd'])
>>> df['time'] = pd.date_range('1/1/2000', periods=9, freq='T')
>>> df.resample('3T', on='time').sum()
a b c d
time
2000-01-01 00:00:00 0 3 6 9
2000-01-01 00:03:00 0 3 6 9
2000-01-01 00:06:00 0 3 6 9
For a DataFrame with MultiIndex, the keyword ``level`` can be used to
specify on level the resampling needs to take place.
>>> time = pd.date_range('1/1/2000', periods=5, freq='T')
>>> df2 = pd.DataFrame(data=10*[range(4)],
columns=['a', 'b', 'c', 'd'],
index=pd.MultiIndex.from_product([time, [1, 2]])
)
>>> df2.resample('3T', level=0).sum()
a b c d
2000-01-01 00:00:00 0 6 12 18
2000-01-01 00:03:00 0 4 8 12
See also
--------
groupby : Group by mapping, function, label, or list of labels.
help(np.tile)
Help on function tile in module numpy.lib.shape_base:
tile(A, reps)
Construct an array by repeating A the number of times given by reps.
If `reps` has length ``d``, the result will have dimension of
``max(d, A.ndim)``.
If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new
axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication,
or shape (1, 1, 3) for 3-D replication. If this is not the desired
behavior, promote `A` to d-dimensions manually before calling this
function.
If ``A.ndim > d``, `reps` is promoted to `A`.ndim by pre-pending 1's to it.
Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as
(1, 1, 2, 2).
Note : Although tile may be used for broadcasting, it is strongly
recommended to use numpy's broadcasting operations and functions.
Parameters
----------
A : array_like
The input array.
reps : array_like
The number of repetitions of `A` along each axis.
Returns
-------
c : ndarray
The tiled output array.
See Also
--------
repeat : Repeat elements of an array.
broadcast_to : Broadcast an array to a new shape
Examples
--------
>>> a = np.array([0, 1, 2])
>>> np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
>>> np.tile(a, (2, 2))
array([[0, 1, 2, 0, 1, 2],
[0, 1, 2, 0, 1, 2]])
>>> np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],
[[0, 1, 2, 0, 1, 2]]])
>>> b = np.array([[1, 2], [3, 4]])
>>> np.tile(b, 2)
array([[1, 2, 1, 2],
[3, 4, 3, 4]])
>>> np.tile(b, (2, 1))
array([[1, 2],
[3, 4],
[1, 2],
[3, 4]])
>>> c = np.array([1,2,3,4])
>>> np.tile(c,(4,1))
array([[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]])
df2=pd.DataFrame({'time':times.repeat(3),
'key':np.tile(['a','b','c'],N),
'value':np.arange(N*3)})
df2
time | key | value | |
---|---|---|---|
0 | 2020-05-23 00:00:00 | a | 0 |
1 | 2020-05-23 00:00:00 | b | 1 |
2 | 2020-05-23 00:00:00 | c | 2 |
3 | 2020-05-23 00:01:00 | a | 3 |
4 | 2020-05-23 00:01:00 | b | 4 |
5 | 2020-05-23 00:01:00 | c | 5 |
6 | 2020-05-23 00:02:00 | a | 6 |
7 | 2020-05-23 00:02:00 | b | 7 |
8 | 2020-05-23 00:02:00 | c | 8 |
9 | 2020-05-23 00:03:00 | a | 9 |
10 | 2020-05-23 00:03:00 | b | 10 |
11 | 2020-05-23 00:03:00 | c | 11 |
12 | 2020-05-23 00:04:00 | a | 12 |
13 | 2020-05-23 00:04:00 | b | 13 |
14 | 2020-05-23 00:04:00 | c | 14 |
15 | 2020-05-23 00:05:00 | a | 15 |
16 | 2020-05-23 00:05:00 | b | 16 |
17 | 2020-05-23 00:05:00 | c | 17 |
18 | 2020-05-23 00:06:00 | a | 18 |
19 | 2020-05-23 00:06:00 | b | 19 |
20 | 2020-05-23 00:06:00 | c | 20 |
21 | 2020-05-23 00:07:00 | a | 21 |
22 | 2020-05-23 00:07:00 | b | 22 |
23 | 2020-05-23 00:07:00 | c | 23 |
24 | 2020-05-23 00:08:00 | a | 24 |
25 | 2020-05-23 00:08:00 | b | 25 |
26 | 2020-05-23 00:08:00 | c | 26 |
27 | 2020-05-23 00:09:00 | a | 27 |
28 | 2020-05-23 00:09:00 | b | 28 |
29 | 2020-05-23 00:09:00 | c | 29 |
30 | 2020-05-23 00:10:00 | a | 30 |
31 | 2020-05-23 00:10:00 | b | 31 |
32 | 2020-05-23 00:10:00 | c | 32 |
33 | 2020-05-23 00:11:00 | a | 33 |
34 | 2020-05-23 00:11:00 | b | 34 |
35 | 2020-05-23 00:11:00 | c | 35 |
36 | 2020-05-23 00:12:00 | a | 36 |
37 | 2020-05-23 00:12:00 | b | 37 |
38 | 2020-05-23 00:12:00 | c | 38 |
39 | 2020-05-23 00:13:00 | a | 39 |
40 | 2020-05-23 00:13:00 | b | 40 |
41 | 2020-05-23 00:13:00 | c | 41 |
42 | 2020-05-23 00:14:00 | a | 42 |
43 | 2020-05-23 00:14:00 | b | 43 |
44 | 2020-05-23 00:14:00 | c | 44 |
To do the same resampling for each value of 'key' for each value of 'key',we introduce the pandas.TimeGrouper object:
resample=df2.groupby(['key','time']).sum()
resample
value | ||
---|---|---|
key | time | |
a | 2020-05-23 00:00:00 | 0 |
2020-05-23 00:01:00 | 3 | |
2020-05-23 00:02:00 | 6 | |
2020-05-23 00:03:00 | 9 | |
2020-05-23 00:04:00 | 12 | |
2020-05-23 00:05:00 | 15 | |
2020-05-23 00:06:00 | 18 | |
2020-05-23 00:07:00 | 21 | |
2020-05-23 00:08:00 | 24 | |
2020-05-23 00:09:00 | 27 | |
2020-05-23 00:10:00 | 30 | |
2020-05-23 00:11:00 | 33 | |
2020-05-23 00:12:00 | 36 | |
2020-05-23 00:13:00 | 39 | |
2020-05-23 00:14:00 | 42 | |
b | 2020-05-23 00:00:00 | 1 |
2020-05-23 00:01:00 | 4 | |
2020-05-23 00:02:00 | 7 | |
2020-05-23 00:03:00 | 10 | |
2020-05-23 00:04:00 | 13 | |
2020-05-23 00:05:00 | 16 | |
2020-05-23 00:06:00 | 19 | |
2020-05-23 00:07:00 | 22 | |
2020-05-23 00:08:00 | 25 | |
2020-05-23 00:09:00 | 28 | |
2020-05-23 00:10:00 | 31 | |
2020-05-23 00:11:00 | 34 | |
2020-05-23 00:12:00 | 37 | |
2020-05-23 00:13:00 | 40 | |
2020-05-23 00:14:00 | 43 | |
c | 2020-05-23 00:00:00 | 2 |
2020-05-23 00:01:00 | 5 | |
2020-05-23 00:02:00 | 8 | |
2020-05-23 00:03:00 | 11 | |
2020-05-23 00:04:00 | 14 | |
2020-05-23 00:05:00 | 17 | |
2020-05-23 00:06:00 | 20 | |
2020-05-23 00:07:00 | 23 | |
2020-05-23 00:08:00 | 26 | |
2020-05-23 00:09:00 | 29 | |
2020-05-23 00:10:00 | 32 | |
2020-05-23 00:11:00 | 35 | |
2020-05-23 00:12:00 | 38 | |
2020-05-23 00:13:00 | 41 | |
2020-05-23 00:14:00 | 44 |
time_key=pd.TimeGrouper('5min')
D:\Anaconda\lib\site-packages\ipykernel_launcher.py:1: FutureWarning: pd.TimeGrouper is deprecated and will be removed; Please use pd.Grouper(freq=...)
"""Entry point for launching an IPython kernel.
resample=(df2.set_index('time').groupby(['key',time_key]).sum())
resample
value | ||
---|---|---|
key | time | |
a | 2020-05-23 00:00:00 | 30 |
2020-05-23 00:05:00 | 105 | |
2020-05-23 00:10:00 | 180 | |
b | 2020-05-23 00:00:00 | 35 |
2020-05-23 00:05:00 | 110 | |
2020-05-23 00:10:00 | 185 | |
c | 2020-05-23 00:00:00 | 40 |
2020-05-23 00:05:00 | 115 | |
2020-05-23 00:10:00 | 190 |
Techniques for method chainning
When applying a sequence of transformations to a dataset,you may find yourself creatingf numerous temporary variables that are never used in your analysis.
pseudocode here:
df=load_data()
df2=df[df['col2']<0]
df2['col1_demeaned']=df2['col1']-df2['col1'].mean()
result=df2.groupby('key').col1_demeaned.std()
While we are not using any real data here,this example highlights some new methods.First,the DataFrame.assign
method is a functional alternative to column assignments of the form df[k]=v.Rather than modifying the object in-place,it returns a new DataFrame with the indicated modifications.So these statements are equivalent:
Usual non-functional way
df2=df.copy()
df2['k']=v
Functional assign way
df2=df.assign(k=v)
Assigning in-place may execute faster than using assign
,but assign
enables easier method chaining:
result=(df2.assign(col1_demeqaned=df2.col1-df2.col2.mean())
.groupby('key')
.col1_demeaned.std())
Version2
result=(load_data()[load_data()['col2']<0]
.assign(col1_demeaned=df2.col1-df2.col2.mean()) # have to refering to df2....
.groupby('key')
.col1_demeaned.std()
)
We use the outer parentheses to make it more convenient to add line breaks.
One thing to keep in mind when doing method chaining is that you may need to refer to temporary objects.In the preceding example, we cannot refer to the result of load_data
until it has been assigning to the temporary variable df
.To help with this assign
and many other pandas functions accept function-like arguments,also known as callables.
To show callables in action, consider a fragment of the example from before:
df=load_data()
df2=df[df['col2']<0]
version 2
df=(load_data()
[lambda x:x['col2']<0]) # alternative method of refering to temporary objects using callables
result=(load_data()
[lambda x:x.col2<0]
.assign(col1_demeaned=lambda x:x.col1-x.col1.mean())
.groupby('key')
.col1_demeaned.std())
The pipe method
You can accomplish a lot with built-in pandas functions and the approaches to method chaining with callables taht we just looked at.However,sometimes you need to use your own functions or funcitons from third-party libraries.This is where the pipe
method comes in.
Consider a sequence of functions calls:
a=f(df,arg1=v1)
b=g(a,v2,arg3=v3)
c=h(b,arg4=v4)
When using functions that accept and returns Series or DataFrame objects,you can rewrite this using calls to pipe
:
result=(df.pipe(f,arg1=v1)
.pipe(g,v2,arg3=v3)
.pipe(h,arg4=v4))
The statement f(df)
and df.pipe(f)
are equivalent,but pipe
makes chained inocation easier.
def group_demean(df,by,cols):
result=df.copy()
g=df.groupby(by)
for c in cols:
result[c]=df[c]-g[c].transform('mean')
return result
result=(df[df.col1[<0]
.pipe(group_demean,['key1','key2'],['col1']])