形象理解“梯度”
梯度是微积分多元函数的一个重要概念,简单来说,梯度是一个向量,当函数上的一点按照该向量移动,函数值增加最大,该向量由函数分别对自变量的偏导值所构成。如果函数是二元函数,则梯度是二维向量,在自变量构成的平面上,如果函数是三元函数,则梯度是三维向量,在自变量构成的空间中。本文着重对它的上述的意义,进行形象的阐述。
下面分别举个例子:
(1)u(x,y)=x**2+y**2,在(-10,10)这一点,梯度向量为(-20,-20)。
其图像如下图:
B点就是(-10,-10,200),O是过该点作的水平面,由于该函数为二元函数,所以梯度向量为x,y组成的二维向量,所以该向量必定在O平面中,具体就是(-20,-20),图中BC向量为与梯度方向相反的向量,是(20,20),沿着该方向走,即在曲面上BE走,就是该函数值减小最快的方向。
(2)u(x,y,z)=x**2+y**2+z**2
该函数为三元函数,实际上它是个体,可以想象成在原点吹气球,气球不断膨胀所包含的体,该函数的梯度向量为x,y,z所组成的三维向量,设点(x0,y0,z0)为该体的某一点,该点沿着(2x0,2y0,2z0)的方向,函数值将增加的最快,而该向量正好也是该点所在的球面的法向向量(方向朝外),如果沿着跟该方向垂直的方向走,函数值将不变,因为它还在该点所在的球面上,上述的几点也跟确实与我们的生活经验吻合。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix