A convenient way to recognize and handwrite multidimensional arrays in Numpy
As a new learner of Numpy, it is very common to be confused by the form of array, braces nested in braces, such as ‘a= np.array[[[1],[2],[3]]]’ so that its shape cannot be precisely known by the users, although the shape can be fetched through ‘a.shape’, making users unable to perform multidimensional array correctly.
The method is as the following:(1)every array needs a most out brace.(2) Go inner, the number of paired brace is the element number of 0 axis, 1 axis, 2 axis etc.(3) The dimension number increased along with the going-inner, until the number element is reached, the sum of levels is the dimensional number.
For example:
>>> import numpy as np >>> data=np.arange(4) >>> data1=data.reshape((4,1)) >>> data2=data.reshape((1,4)) >>> data3=data.reshape((2,2)) >>> data4=data.reshape((1,2,2)) >>> data5=data.reshape((2,1,2)) >>> data6=data.reshape((2,2,1)) >>> data array([0, 1, 2, 3]) >>> data1 array([[0], [1], [2], [3]]) >>> data2 array([[0, 1, 2, 3]]) >>> data3 array([[0, 1], [2, 3]]) >>> data4 array([[[0, 1], [2, 3]]]) >>> data5 array([[[0, 1]], [[2, 3]]]) >>> data6 array([[[0], [1]], [[2], [3]]])
①data1's shape is (4,1),so firstly, the most out brace pair shall be set-->[ ], and then 0 axis is 4, meaning 4 pairs of brace inside -->[ [ ],[ ],[ ],[ ] ] ,finally, 1 axis is 1,and is the final dimension, meaning 1 number element shall be inside-->[ [0],[1],[2],[3]].
② data2's shape is (1,4), firstly-->[ ], then -->[ [ ] ], finally -->[ [ 0,1,2,3] ]
③ data3's shape is (2,2), firstly-->[ ] ,then--> [ [ ], [ ] ], finally-->[ [0,1], [2,3] ]
④data4' shape is (1,2,2), firstly-->[ ] ,then-->[ [ ] ], then--> [ [ [ ], [ ] ] ], finally--> [ [ [ 0,1], [2,3 ] ] ]
⑤data5's shape is (2,1,2),firstly--> [ ],then-->[ [ ],[ ] ], then-->[ [ [ ] ], [ [ ] ] ], finally --> [ [ [ 0,1],[ [ 2,3] ] ]
⑥data6's shape is (2,2,1),firstly-->[ ],then --> [ [ ] ,[ ] ],then-->[ [ [ ], [ ] ], [ [ ] , [ ] ] ],finally-->[ [ [ 0],[1] ], [ [2],[3] ] ]
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix